Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5509
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDas, Kritiprasannaen_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:20Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:20Z-
dc.date.issued2021-
dc.identifier.citationDas, K., & Pachori, R. B. (2021). Schizophrenia detection technique using multivariate iterative filtering and multichannel EEG signals. Biomedical Signal Processing and Control, 67 doi:10.1016/j.bspc.2021.102525en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85102885815)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2021.102525-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5509-
dc.description.abstractA new approach for extension of univariate iterative filtering (IF) for decomposing a signal into intrinsic mode functions (IMFs) or oscillatory modes is proposed for multivariate multi-component signals. Additionally the paper proposes a method to detect schizophrenia (Sz), based on analysing multi-channel electroencephalogram (EEG) signals. Using proposed multivariate iterative filtering (MIF), multi-channel EEG data are decomposed into multivariate IMFs (MIMFs). Depends on mean frequency, IMFs are grouped in order to separate EEG rhythms (delta, theta, alpha, beta, gamma) from EEG signals. The features, such as Hjorth parameters are extracted from EEG rhythms. Extracted features are ranked using student t-test and most discriminant 30 features are used for classification. Different classifier such as K-nearest neighbours (K-NN), linear discriminant analysis (LDA), support vector machine (SVM) with diffident kernels are considered to classify Sz and healthy EEG patterns. The proposed method is employed to evaluate 19-channel EEG signals recorded from 14 paranoid Sz patients and 14 healthy subjects. We have achieved highest accuracy of 98.9% using the SVM (Cubic) classifier. Sensitivity, specificity, positive predictive value (PPV), and area under ROC curve (AUC) of the same classifier are 99.0%, 98.8%, 98.4% and 0.999 respectively. Proposed approach for MIF is computationally efficient as compared to other multivariate signal decomposition algorithms. This paper presents a framework for decomposing multivariate signals efficiently and builds a model for detecting Sz accurately. © 2021 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectBiomedical signal processingen_US
dc.subjectDiscriminant analysisen_US
dc.subjectElectroencephalographyen_US
dc.subjectIterative methodsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSupport vector machinesen_US
dc.subjectElectroencephalogram rhythm separationen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectIterative filteringen_US
dc.subjectMultichannelen_US
dc.subjectMultichannel electroencephalogramsen_US
dc.subjectMultivariate iterative filteringen_US
dc.subjectMultivariate signalsen_US
dc.subjectSchizophrenia diagnoseen_US
dc.subjectSupport vectors machineen_US
dc.subjectDiseasesen_US
dc.subjectadulten_US
dc.subjectalgorithmen_US
dc.subjectalpha rhythmen_US
dc.subjectArticleen_US
dc.subjectbeta rhythmen_US
dc.subjectclinical articleen_US
dc.subjectcontrolled studyen_US
dc.subjectdelta rhythmen_US
dc.subjectdiagnostic test accuracy studyen_US
dc.subjectdiscriminant analysisen_US
dc.subjectelectric activityen_US
dc.subjectelectroencephalogramen_US
dc.subjectfeature extractionen_US
dc.subjectfemaleen_US
dc.subjectFourier transformen_US
dc.subjectgamma rhythmen_US
dc.subjecthumanen_US
dc.subjectintrinsic mode functionen_US
dc.subjectk nearest neighboren_US
dc.subjectmaleen_US
dc.subjectmultivariate iterative filteringen_US
dc.subjectparanoid schizophreniaen_US
dc.subjectpredictive valueen_US
dc.subjectpriority journalen_US
dc.subjectreceiver operating characteristicen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsignal processingen_US
dc.subjectsupport vector machineen_US
dc.subjecttheta rhythmen_US
dc.titleSchizophrenia detection technique using multivariate iterative filtering and multichannel EEG signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: