Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKaushik, Vishalen_US
dc.contributor.authorRajput, Swatien_US
dc.contributor.authorSrivastav, Sulabhen_US
dc.contributor.authorSingh, Laliten_US
dc.contributor.authorBabu, Premen_US
dc.contributor.authorKumar, Mukeshen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:30Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:30Z-
dc.date.issued2021-
dc.identifier.citationKaushik, V., Rajput, S., Srivastav, S., Singh, L., Babu, P., Heidari, E., . . . Kumar, M. (2021). On-chip nanophotonic broadband wavelength detector with 2D-electron gas: Nanophotonic platform for wavelength detection in visible spectral region. Nanophotonics, doi:10.1515/nanoph-2021-0365en_US
dc.identifier.issn2192-8614-
dc.identifier.otherEID(2-s2.0-85120755693)-
dc.identifier.urihttps://doi.org/10.1515/nanoph-2021-0365-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5543-
dc.description.abstractMiniaturized, low-cost wavelength detectors are gaining enormous interest as we step into the new age of photonics. Incompatibility with integrated circuits or complex fabrication requirement in most of the conventionally used filters necessitates the development of a simple, on-chip platform for easy-to-use wavelength detection system. Also, intensity fluctuations hinder precise, noise free detection of spectral information. Here we propose a novel approach of utilizing wavelength sensitive photocurrent across semiconductor heterojunctions to experimentally validate broadband wavelength detection on an on-chip platform with simple fabrication process. The proposed device utilizes linear frequency response of internal photoemission via 2-D electron gas in a ZnO based heterojunction along with a reference junction for coherent common mode rejection. We report sensitivity of 0.96 μA/nm for a broad wavelength-range of 280 nm from 660 to 940 nm. Simple fabrication process, efficient intensity noise cancelation along with heat resistance and radiation hardness of ZnO makes the proposed platform simple, low-cost and efficient alternative for several applications such as optical spectrometers, sensing, and Internet of Things (IOTs). © 2021 Vishal Kaushik et al., published by De Gruyter, Berlin/Boston 2021.en_US
dc.language.isoenen_US
dc.publisherDe Gruyter Open Ltden_US
dc.sourceNanophotonicsen_US
dc.subjectCostsen_US
dc.subjectElectron gasen_US
dc.subjectFrequency responseen_US
dc.subjectHeat resistanceen_US
dc.subjectHeterojunctionsen_US
dc.subjectPhotodetectorsen_US
dc.subjectWide band gap semiconductorsen_US
dc.subjectZinc oxideen_US
dc.subject2D electron gasen_US
dc.subjectLow-costsen_US
dc.subjectOn chipsen_US
dc.subjectPhoto detectionen_US
dc.subjectSemiconductor heterojunctionsen_US
dc.subjectSimple++en_US
dc.subjectSub-wavelengthen_US
dc.subjectSub-wavelength photodetectionen_US
dc.subjectWavelength detectionen_US
dc.subjectWavelength detectoren_US
dc.subjectII-VI semiconductorsen_US
dc.titleOn-chip nanophotonic broadband wavelength detector with 2D-Electron gas: Nanophotonic platform for wavelength detection in visible spectral regionen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold, Green-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: