Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5552
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:32Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:32Z-
dc.date.issued2021-
dc.identifier.citationSingh, U. K., Mitra, R., Bhatia, V., & Mishra, A. K. (2021). Kernel minimum error entropy based estimator for MIMO radar in non-gaussian clutter. IEEE Access, 9, 125320-125330. doi:10.1109/ACCESS.2021.3111103en_US
dc.identifier.issn2169-3536-
dc.identifier.otherEID(2-s2.0-85114751287)-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2021.3111103-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5552-
dc.description.abstractIn this paper, a kernel minimum error entropy (KMEE) based estimator is proposed for the estimation of multiple targets' direction of departure (DOD), the direction of arrival (DOA), and the Doppler shift with multiple input multiple output radar in the presence of non-Gaussian clutter. Most existing estimation approaches are based on optimization of a complex cost function which often leads to a sub-optimum solution. Therefore, for the accurate estimation of DOD, DOA and Doppler shift, an efficient, kernel adaptive filter (KAF) based estimation approach is proposed. The proposed estimator utilizes the minimum error entropy (MEE) criterion and minimizes the error entropy function. The MEE, being an information-theoretic criterion, optimizes the higher-order statistics of error and thus makes the proposed estimator robust against the effects of outliers like clutter. The KMEE based estimator without any sparsification suffers from a linear increase in computational complexity. Thus, subsequently, the computational complexity of the proposed KMEE based estimator is reduced by incorporation of novelty criterion (NC) based sparsification technique, and the resulting estimator is called KMEE-NC. The performance of the proposed KMEE-NC based estimator is compared with the recently introduced sparse estimators based on kernel maximum correntropy criterion, and kernel minimum mean square error criterion. Additionally, KMEE-NC based estimator is also compared with other existing conventional estimators. Further, for assessing the accuracy of the proposed estimator, the modified Cramer-Rao lower bound is derived using the modified Fisher information matrix. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Accessen_US
dc.subjectAdaptive filteringen_US
dc.subjectAdaptive filtersen_US
dc.subjectClutter (information theory)en_US
dc.subjectComputational complexityen_US
dc.subjectCost functionsen_US
dc.subjectCramer-Rao boundsen_US
dc.subjectDoppler effecten_US
dc.subjectEntropyen_US
dc.subjectErrorsen_US
dc.subjectFisher information matrixen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectHigher order statisticsen_US
dc.subjectMean square erroren_US
dc.subjectMIMO radaren_US
dc.subjectMIMO systemsen_US
dc.subjectRadar clutteren_US
dc.subjectRadar target recognitionen_US
dc.subjectTrellis codesen_US
dc.subjectCramer Rao lower bounden_US
dc.subjectDirection of departureen_US
dc.subjectInformation theoretic criterionen_US
dc.subjectKernel adaptive filtersen_US
dc.subjectMinimum error entropy criterionsen_US
dc.subjectMinimum mean square error criterionen_US
dc.subjectModified fisher information matrixesen_US
dc.subjectMultiple input multiple output (MIMO) radarsen_US
dc.subjectError statisticsen_US
dc.titleKernel Minimum Error Entropy Based Estimator for MIMO Radar in Non-Gaussian Clutteren_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: