Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5613
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:51Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:51Z-
dc.date.issued2020-
dc.identifier.citationFatimah, B., Singh, P., Singhal, A., & Pachori, R. B. (2020). Detection of apnea events from ECG segments using fourier decomposition method. Biomedical Signal Processing and Control, 61 doi:10.1016/j.bspc.2020.102005en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85085268434)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2020.102005-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5613-
dc.description.abstractAbsence of airflow in breathing during sleep for more than 10 s is known as sleep apnea. It causes low oxygen levels in the blood which may lead to many cardiovascular problems. Current methods of detection are rather time-consuming and expensive. Automated detection using electrocardiogram (ECG) signal is seen as a promising and efficient method for the identification of sleep apnea events. In this paper, the single-lead ECG signal is divided into 1-min segments, and separated into frequency bands using Fourier decomposition method. From these signal components, features like mean absolute deviation and entropy are computed to classify the ECG segments using machine learning algorithms. The proposed method yields an accuracy of 92.59%, sensitivity of 89.70%, specificity of 94.67% and precision of 91.27% on MIT PhysioNet Apnea-ECG dataset, using a support vector machine (SVM) classifier with the Gaussian kernel. The strength of the proposed method has been verified on two more datasets, namely MIT-BIH polysomnography and University College Dublin sleep apnea database (UCDDB). The classification results are compared with the existing state-of-the-art techniques to demonstrate the superior performance of the proposed method. Proposed methodology is implemented using the fast Fourier transform (FFT) which makes it computationally efficient and can be used for real-time sleep apnea detection. © 2020 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectClassification (of information)en_US
dc.subjectElectrocardiographyen_US
dc.subjectFast Fourier transformsen_US
dc.subjectLearning algorithmsen_US
dc.subjectSleep researchen_US
dc.subjectSupport vector machinesen_US
dc.subjectAutomated detectionen_US
dc.subjectClassification resultsen_US
dc.subjectComputationally efficienten_US
dc.subjectElectrocardiogram signalen_US
dc.subjectFourier decompositionen_US
dc.subjectMean absolute deviationsen_US
dc.subjectSleep apnea detectionen_US
dc.subjectState-of-the-art techniquesen_US
dc.subjectBiomedical signal processingen_US
dc.subjectapnea hypopnea indexen_US
dc.subjectArticleen_US
dc.subjectbody massen_US
dc.subjectclassifieren_US
dc.subjectcontrolled studyen_US
dc.subjectconvolutional neural networken_US
dc.subjectdetection algorithmen_US
dc.subjectdiscrete cosine transformen_US
dc.subjectdiscrete Fourier transformen_US
dc.subjectelectrocardiographyen_US
dc.subjectentropyen_US
dc.subjectfeature extractionen_US
dc.subjectfeature selectionen_US
dc.subjectFourier transformen_US
dc.subjecthumanen_US
dc.subjectkernel methoden_US
dc.subjectmachine learningen_US
dc.subjectpolysomnographyen_US
dc.subjectpriority journalen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsignal processingen_US
dc.subjectsleep disordered breathingen_US
dc.subjectsupport vector machineen_US
dc.titleDetection of apnea events from ECG segments using Fourier decomposition methoden_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: