Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5620
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:53Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:53Z-
dc.date.issued2020-
dc.identifier.citationDe La O Serna, J. A., Paternina, M. R. A., Zamora-Mendez, A., Tripathy, R. K., & Pachori, R. B. (2020). EEG-rhythm specific taylor-fourier filter bank implemented with O-splines for the detection of epilepsy using EEG signals. IEEE Sensors Journal, 20(12), 6542-6551. doi:10.1109/JSEN.2020.2976519en_US
dc.identifier.issn1530-437X-
dc.identifier.otherEID(2-s2.0-85085181990)-
dc.identifier.urihttps://doi.org/10.1109/JSEN.2020.2976519-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5620-
dc.description.abstractThe neurological disorder which is associated with the abnormal electrical activity generated from the brain causing seizures is typically termed as epilepsy. The automated detection and classification of epilepsy based on the analysis of the electroencephalogram (EEG) signal are highly required for its early diagnosis. In this paper, we have developed an EEG-rhythm specific Taylor-Fourier filter-bank implemented with O-splines for the detection and classification of epilepsy from the EEG signal. The energy features are evaluated from the Taylor-Fourier sub-band signals of the EEG signal. The classifiers such as K-nearest neighbor (KNN) and least square support vector machine (SVM) are employed for the classification of normal, seizure-free and seizure from the Taylor-Fourier EEG-band energy (TFEBE) features. The experimental results demonstrate that, for the classification of normal, seizure-free, and seizure classes, the least square SVM classifier has an overall accuracy value of 94.88% using the EEG signals from the Bonn university database. The proposed EEG rhythm specific Taylor-Fourier filter-bank with O-splines can be implemented in real-time for the detection of epileptic seizures from EEG signals. © 2001-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Journalen_US
dc.subjectBrainen_US
dc.subjectClassification (of information)en_US
dc.subjectComputer aided diagnosisen_US
dc.subjectElectroencephalographyen_US
dc.subjectFilter banksen_US
dc.subjectFourier transformsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectNeurologyen_US
dc.subjectSplinesen_US
dc.subjectSupport vector machinesen_US
dc.subjectAutomated detection and classificationen_US
dc.subjectElectrical activitiesen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEpileptic seizuresen_US
dc.subjectK nearest neighbor (KNN)en_US
dc.subjectLeast square support vector machinesen_US
dc.subjectNeurological disordersen_US
dc.subjectOverall accuraciesen_US
dc.subjectBiomedical signal processingen_US
dc.titleEEG-Rhythm Specific Taylor-Fourier Filter Bank Implemented with O-Splines for the Detection of Epilepsy Using EEG Signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: