Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5630
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:42:57Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:42:57Z-
dc.date.issued2020-
dc.identifier.citationSharma, R., Pachori, R. B., & Sircar, P. (2020). Seizures classification based on higher order statistics and deep neural network. Biomedical Signal Processing and Control, 59 doi:10.1016/j.bspc.2020.101921en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85081750729)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2020.101921-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5630-
dc.description.abstractThe epileptic seizure is a transient and abnormal discharge of nerve cells in the brain that leads to a chronic disease of brain dysfunction. There are various features-based seizures classification algorithms listed in the literature. But, there is no standardized set of attributes that can perfectly capture the relevant information regarding the signal dynamics. In this paper, a computationally-fast seizure classification algorithm is presented. The obtained results through the proposed algorithm are consistent and repeatable. This paper describes an automated seizures classification technique using the nonlinear higher-order statistics and deep neural network algorithms. The sparse autoencoder based deep neural network is used to extract the essential structural details from the third-order cumulant coefficients matrix. The proposed algorithm achieves a reliable classification accuracy for both categories, i.e., binary classes and three-classes of electroencephalogram (EEG) signals with the softmax classifier. The proposed study is simulated on the publicly-available Bonn university EEG database. The achieved results show the effectiveness of the proposed algorithm for seizures classification. © 2020 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectBiomedical signal processingen_US
dc.subjectDeep neural networksen_US
dc.subjectElectroencephalographyen_US
dc.subjectHigher order statisticsen_US
dc.subjectLearning systemsen_US
dc.subjectNeuronsen_US
dc.subjectAuto encodersen_US
dc.subjectClassification accuracyen_US
dc.subjectClassification algorithmen_US
dc.subjectClassification techniqueen_US
dc.subjectCoefficients matrixesen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectNeural network algorithmen_US
dc.subjectSeizureen_US
dc.subjectNeural networksen_US
dc.subjectalgorithmen_US
dc.subjectArticleen_US
dc.subjectback propagation neural networken_US
dc.subjectclassification algorithmen_US
dc.subjectcontrolled studyen_US
dc.subjectconvolutional neural networken_US
dc.subjectdeep neural networken_US
dc.subjectdiscrete wavelet transformen_US
dc.subjectdisease classificationen_US
dc.subjectelectroencephalogramen_US
dc.subjectgenetic algorithmen_US
dc.subjecthumanen_US
dc.subjectpriority journalen_US
dc.subjectrecurrent neural networken_US
dc.subjectseizureen_US
dc.subjectsparse autoencoderen_US
dc.subjectsupport vector machineen_US
dc.titleSeizures classification based on higher order statistics and deep neural networken_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: