Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5648
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:03Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:03Z-
dc.date.issued2020-
dc.identifier.citationSharma, R., Sircar, P., & Pachori, R. B. (2020). Automated focal EEG signal detection based on third order cumulant function. Biomedical Signal Processing and Control, 58 doi:10.1016/j.bspc.2020.101856en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85078028305)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2020.101856-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5648-
dc.description.abstractEpilepsy is a chronic neurological disorder which occurs due to recurrent seizures. The epilepsy surgery is the only cure of epileptic seizures as it cannot be controlled with medication. Hence, it becomes the primary task to localize the epileptogenic zone for successful epilepsy surgery. The epileptic surgical area can be recognized by the focal intracranial electroencephalogram (EEG) signals. In this paper, a nonlinear third-order cumulant has been proposed for the classification of the non-focal and focal intracranial EEG signals efficiently. The attributes are measured from the logarithm of the diagonal slice of third-order cumulant. It provides relevant subtle information about the nonlinear dynamics of EEG signals. A data reduction technique, locality sensitive discriminant analysis (LSDA), has been introduced to map the measured features at higher dimensional space and ranked them according to the probability of discrimination. The achieved results reveal that the ranked LSDA features with the support vector machine (SVM) classifier have yielded maximum classification accuracy of 99% on the Bern Barcelona EEG database. Thus, the proposed algorithm helps a clinician to localize the epileptogenic zone for successful brain surgery. © 2020en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectDiscriminant analysisen_US
dc.subjectElectroencephalographyen_US
dc.subjectHigher order statisticsen_US
dc.subjectNeurologyen_US
dc.subjectSignal detectionen_US
dc.subjectSupport vector machinesen_US
dc.subjectSurgeryen_US
dc.subjectClassification accuracyen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectKernalen_US
dc.subjectLocality sensitive discriminant analysisen_US
dc.subjectLSDAen_US
dc.subjectNeurological disordersen_US
dc.subjectNon-focal and focalen_US
dc.subjectProbability of discriminationen_US
dc.subjectBiomedical signal processingen_US
dc.subjectArticleen_US
dc.subjectautomationen_US
dc.subjectbrain surgeryen_US
dc.subjectclassificationen_US
dc.subjectclassification algorithmen_US
dc.subjectclassifieren_US
dc.subjectdata baseen_US
dc.subjectdiscriminant analysisen_US
dc.subjectelectroencephalogramen_US
dc.subjectepileptic focusen_US
dc.subjectfeature extractionen_US
dc.subjecthumanen_US
dc.subjectmeasurement accuracyen_US
dc.subjectnonlinear systemen_US
dc.subjectpredictive valueen_US
dc.subjectpriority journalen_US
dc.subjectsignal detectionen_US
dc.subjectsupport vector machineen_US
dc.titleAutomated focal EEG signal detection based on third order cumulant functionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: