Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5654
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSiddharth, Gauraven_US
dc.contributor.authorKhan, Md Arifen_US
dc.contributor.authorSingh, Ruchi A.en_US
dc.contributor.authorMukherjee, Shaibalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:05Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:05Z-
dc.date.issued2020-
dc.identifier.citationSiddharth, G., Sengar, B. S., Garg, V., Khan, M. A., Singh, R., & Mukherjee, S. (2020). Analytical performance analysis of CdZnO/ZnO-based multiple quantum well solar cell. IEEE Transactions on Electron Devices, 67(3), 1047-1051. doi:10.1109/TED.2020.2965020en_US
dc.identifier.issn0018-9383-
dc.identifier.otherEID(2-s2.0-85081179103)-
dc.identifier.urihttps://doi.org/10.1109/TED.2020.2965020-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5654-
dc.description.abstractThis article presents analytical and simulation evaluation of multiple quantum well solar cells (MQWSC) with CdZnO/ZnO as the intrinsic layer, Sb-doped ZnO (SZO) as a p-type layer, and Ga-doped ZnO (GZO) as an n-type layer of the p-i-n solar cell (SC). The material parameters used in this article are obtained from the experimental reports on the properties of ZnO and CdZnO thin films grown by dual-ion-beam sputtering (DIBS). The American Society for Testing and Materials (ASTM) standards data sheets have been utilized for attaining photon flux density instead of the blackbody radiation formula. The analytically obtained results show good agreement with the simulated results obtained by the ATLAS simulation tool. The variation of device performance parameters is examined for thermal stability. The results show that, for the proposed ZnO-based MQWSC, the open-circuit voltage (Voc) has a negative temperature coefficient (-2.63 mV/°C), and short-circuit current density (Jsc) and conversion efficiency (η) have positive temperature coefficients of 2.43 × 10-3 mA/cm2 °C and 2.91 × 10-3 %/°C, respectively. Further, the device performance has been explored for variation in the number of quantum wells. The results present that an increase in the number of quantum wells has a negative impact on the performance parameters of ZnO-based MQWSC. © 2020 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Electron Devicesen_US
dc.subjectAntimony compoundsen_US
dc.subjectCadmium compoundsen_US
dc.subjectGallium compoundsen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectIon beamsen_US
dc.subjectOpen circuit voltageen_US
dc.subjectPetroleum reservoir evaluationen_US
dc.subjectPhotonsen_US
dc.subjectSolar cellsen_US
dc.subjectSputteringen_US
dc.subjectTemperatureen_US
dc.subjectZinc oxideen_US
dc.subjectAM1.5Gen_US
dc.subjectAmerican society for testing and materialsen_US
dc.subjectAnalytical performanceen_US
dc.subjectDual ion beam sputteringen_US
dc.subjectPerformance parametersen_US
dc.subjectPhoton flux densitiesen_US
dc.subjectQuantum well solar cellsen_US
dc.subjectSimulation evaluationen_US
dc.subjectSemiconductor quantum wellsen_US
dc.titleAnalytical Performance Analysis of CdZnO/ZnO-Based Multiple Quantum Well Solar Cellen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: