Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5656
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:06Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:06Z-
dc.date.issued2020-
dc.identifier.citationSinghal, A., Singh, P., Fatimah, B., & Pachori, R. B. (2020). An efficient removal of power-line interference and baseline wander from ECG signals by employing fourier decomposition technique. Biomedical Signal Processing and Control, 57 doi:10.1016/j.bspc.2019.101741en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-85075324175)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2019.101741-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5656-
dc.description.abstractBaseline wander (BW) and power-line interference (PLI) tend to occur in every recorded electrocardiogram (ECG) signal and can significantly deteriorate the quality of the signal. They need to be separated from the ECG signal to facilitate an accurate diagnosis of the patient. In this paper, we propose a new methodology based on the Fourier decomposition method (FDM) to separate both BW and PLI simultaneously from the recorded ECG signal and obtain clean ECG data. The proposed method employs either of discrete Fourier transform (DFT) or discrete cosine transform (DCT) in order to process the signal. Key DFT/DCT coefficients relating to BW and PLI are identified and then suppressed using optimally designed FDM based on a zero-phase filtering approach. The effectiveness of our method is validated on the MIT-BIH Arrhythmia database. Simulation results clearly demonstrate that the proposed method performs superior in comparison to the existing state-of-the-art techniques at different levels of signal to noise ratio power (SNR). Moreover, this method has low computational complexity which makes it suitable for real-time pre-processing of ECG signals. © 2019 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectDiscrete cosine transformsen_US
dc.subjectDiscrete Fourier transformsen_US
dc.subjectElectrocardiographyen_US
dc.subjectSignal interferenceen_US
dc.subjectSignal to noise ratioen_US
dc.subjectBaseline wanderen_US
dc.subjectECG signalsen_US
dc.subjectFourier decompositionen_US
dc.subjectNoise removalen_US
dc.subjectPowerline interferenceen_US
dc.subjectBiomedical signal processingen_US
dc.subjectArticleen_US
dc.subjectbaseline wanderen_US
dc.subjectdiscrete cosine transformen_US
dc.subjectelectrocardiographyen_US
dc.subjectFourier decomposition techniqueen_US
dc.subjectFourier transformen_US
dc.subjectheart arrhythmiaen_US
dc.subjectheart diseaseen_US
dc.subjecthumanen_US
dc.subjectnoise reductionen_US
dc.subjectpower line interferenceen_US
dc.subjectpriority journalen_US
dc.subjectprocessingen_US
dc.subjectsignal noise ratioen_US
dc.subjectsignal processingen_US
dc.subjectsimulationen_US
dc.titleAn efficient removal of power-line interference and baseline wander from ECG signals by employing Fourier decomposition techniqueen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: