Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5682
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:16Z-
dc.date.issued2020-
dc.identifier.citationShukla, A. K., Pandey, R. K., Yadav, S., & Pachori, R. B. (2020). Generalized fractional filter-based algorithm for image denoising. Circuits, Systems, and Signal Processing, 39(1), 363-390. doi:10.1007/s00034-019-01186-yen_US
dc.identifier.issn0278-081X-
dc.identifier.otherEID(2-s2.0-85068970279)-
dc.identifier.urihttps://doi.org/10.1007/s00034-019-01186-y-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5682-
dc.description.abstractThis paper presents a new algorithm for image denoising using a fractional integral mask of the K-operator. K-operator is the generalized fractional operator, and it reduces to Riemann–Liouville and Caputo fractional derivatives in a special case. The proposed algorithm is applied to digital images of different nature to demonstrate the performance of image denoising. Experimental results are compared with other existing filters together with block matching and 3-D filtering, and weighted nuclear norm minimization-based approaches. The obtained experimental results show that the proposed algorithm is computationally efficient and its average performance is comparatively better than other discussed methods. © 2019, Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherBirkhauseren_US
dc.sourceCircuits, Systems, and Signal Processingen_US
dc.subjectCalculationsen_US
dc.subjectDifference equationsen_US
dc.subjectDifferentiation (calculus)en_US
dc.subjectInterpolationen_US
dc.subjectTexturesen_US
dc.subjectBlock Matchingen_US
dc.subjectCaputo fractional derivativesen_US
dc.subjectComputationally efficienten_US
dc.subjectFractional calculusen_US
dc.subjectFractional filtersen_US
dc.subjectFractional integralsen_US
dc.subjectFractional operatorsen_US
dc.subjectNuclear norm minimizationsen_US
dc.subjectImage denoisingen_US
dc.titleGeneralized Fractional Filter-Based Algorithm for Image Denoisingen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: