Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5683
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:16Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:16Z-
dc.date.issued2019-
dc.identifier.citationSiddharth, T., Tripathy, R. K., & Pachori, R. B. (2019). Discrimination of focal and non-focal seizures from EEG signals using sliding mode singular spectrum analysis. IEEE Sensors Journal, 19(24), 12286-12296. doi:10.1109/JSEN.2019.2939908en_US
dc.identifier.issn1530-437X-
dc.identifier.otherEID(2-s2.0-85076357576)-
dc.identifier.urihttps://doi.org/10.1109/JSEN.2019.2939908-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5683-
dc.description.abstractEpilepsy is a neurological disorder, and it is diagnosed using electroencephalogram (EEG) signal. The discrimination of focal and non-focal categories of EEG signals is the primary task to locate epilepsy affected regions in the brain. In this paper, a novel approach to classify the focal and non-focal types of EEG signals is proposed. This approach is based on the decomposition of the EEG signal into reconstruction components (RCs) using sliding mode-singular spectrum analysis (SM-SSA). A total of five RCs are extracted from each EEG signal using SM-SSA. Then, a classifier is designed by combining the sparse-autoencoder (SAE) hidden layer, and radial basis function neural network (RBFN). Each RC obtained from the SM-SSA of EEG signal, and the SAE based RBFN (SAE-RBFN) classifir are used to classify the focal and non-focal types of EEG signals. The performance of the proposed approach is assessed using a publicly available database. The experimental results demonstrate that the third RC coupled with SAE-RBFN classifier produces an average accuracy, average sensitivity and average specificity values of 99.11%, 98.52%, and 99.70%, respectively using 10-fold cross-validation. The proposed approach is compared with existing methods for the discrimination of focal and non-focal EEG signals. © 2001-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Journalen_US
dc.subjectElectroencephalographyen_US
dc.subjectMultilayer neural networksen_US
dc.subjectNeurologyen_US
dc.subjectRadial basis function networksen_US
dc.subjectSpectrum analysisen_US
dc.subject10-fold cross-validationen_US
dc.subjectDeep layeren_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectfocalen_US
dc.subjectnon-focalen_US
dc.subjectRadial basis function neural networksen_US
dc.subjectSingular spectrum analysisen_US
dc.subjectSliding modesen_US
dc.subjectBiomedical signal processingen_US
dc.titleDiscrimination of Focal and Non-Focal Seizures from EEG Signals Using Sliding Mode Singular Spectrum Analysisen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: