Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5731
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:33Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:33Z-
dc.date.issued2019-
dc.identifier.citationBhattacharyya, A., Ranta, R., Le Cam, S., Louis-Dorr, V., Tyvaert, L., Colnat-Coulbois, S., . . . Pachori, R. B. (2019). A multi-channel approach for cortical stimulation artefact suppression in depth EEG signals using time-frequency and spatial filtering. IEEE Transactions on Biomedical Engineering, 66(7), 1915-1926. doi:10.1109/TBME.2018.2881051en_US
dc.identifier.issn0018-9294-
dc.identifier.otherEID(2-s2.0-85056301852)-
dc.identifier.urihttps://doi.org/10.1109/TBME.2018.2881051-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5731-
dc.description.abstractObjective: The stereo electroencephalogram (SEEG) recordings are the state-of-the art tool used in pre-surgical evaluation of drug-unresponsive epileptic patients. Coupled with SEEG, electrical cortical stimulation (CS) offers a complementary tool to investigate the lesioned/healthy brain regions and to identify the epileptic zones with precision. However, the propagation of this stimulation inside the brain masks the cerebral activity recorded by nearby multi-contact SEEG electrodes. The objective of this paper is to propose a novel filtering approach for suppressing the CS artifact in SEEG signals using time, frequency as well as spatial information. Methods: The method combines spatial filtering with tunable-Q wavelet transform (TQWT). SEEG signals are spatially filtered to isolate the CS artifacts within a few number of sources/components. The artifacted components are then decomposed into oscillatory background and sharp varying transient signals using TQWT. The CS artifact is assumed to lie in the transient part of the signal. Using prior known time-frequency information of the CS artifacts, we selectively mask the wavelet coefficients of the transient signal and extract out any remaining significant electro-physiological activity. Results: We have applied our proposed method of CS artifact suppression on simulated and real SEEG signals with convincing performance. The experimental results indicate the effectiveness of the proposed approach. Conclusion: The proposed method suppresses CS artifacts without affecting the background SEEG signal. Significance: The proposed method can be applied for suppressing both low and high frequency CS artifacts and outperforms current methods from the literature. © 1964-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceIEEE Transactions on Biomedical Engineeringen_US
dc.subjectBeamformingen_US
dc.subjectBlind source separationen_US
dc.subjectBrainen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectInformation filteringen_US
dc.subjectWavelet transformsen_US
dc.subjectArtifact suppressionen_US
dc.subjectCortical stimulationen_US
dc.subjectElectrophysiological activityen_US
dc.subjectLow and high frequenciesen_US
dc.subjectSEEGen_US
dc.subjectsubspace correlation approachen_US
dc.subjectTime frequency informationen_US
dc.subjectWavelet coefficientsen_US
dc.subjectBiomedical signal processingen_US
dc.subjectadulten_US
dc.subjectalgorithmen_US
dc.subjectArticleen_US
dc.subjectartifact reductionen_US
dc.subjectblind source separationen_US
dc.subjectbrain cortexen_US
dc.subjectbrain depth recordingen_US
dc.subjectbrain sizeen_US
dc.subjectepileptic patienten_US
dc.subjecthumanen_US
dc.subjectimage artifacten_US
dc.subjectinformation processingen_US
dc.subjectmajor clinical studyen_US
dc.subjectnerve stimulationen_US
dc.subjectoscillationen_US
dc.subjectsignal processingen_US
dc.subjectspatial filtering methoden_US
dc.subjectstereoelectroencephalographyen_US
dc.subjectsubspace correlation approachen_US
dc.subjecttemporal lobe epilepsyen_US
dc.subjecttime frequency methoden_US
dc.subjecttunable Q wavelet transformen_US
dc.subjectwavelet transformationen_US
dc.titleA Multi-Channel Approach for Cortical Stimulation Artefact Suppression in Depth EEG Signals Using Time-Frequency and Spatial Filteringen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: