Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5739
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSingh, Laliten_US
dc.contributor.authorTidke, Surbhien_US
dc.contributor.authorKumar, Mukeshen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:36Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:36Z-
dc.date.issued2019-
dc.identifier.citationSingh, L., Tidke, S., & Kumar, M. (2019). Guiding and controlling light at nanoscale in field effect transistor. Applied Physics B: Lasers and Optics, 125(6) doi:10.1007/s00340-019-7202-3en_US
dc.identifier.issn0946-2171-
dc.identifier.otherEID(2-s2.0-85065224096)-
dc.identifier.urihttps://doi.org/10.1007/s00340-019-7202-3-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5739-
dc.description.abstractMetal–oxide–semiconductor field-effect transistor (MOSFET) and tunnel field-effect transistor (TFET) are proposed to guide and control the light at nanoscale utilizing the hybridization of plasmonic and optical modes. The hybrid plasmonic (HP) mode is confined in the dielectric sandwiched between the metal gate and semiconductor channel, which results from the coupling of surface plasmonic polariton mode at the metal–dielectric interface with the optical mode in the dielectric. Conventional conductivity modulations in the channel through gate and drain–source voltages are utilized to control the guided light. A long propagation length of 74 μm and a very small mode area of λ2/ 96 are reported for field-effect transistor at an operating wavelength of 1550 nm which are useful to realize low loss and compact optoelectronic devices. The charge-carrier dynamics along with the plasma dispersion effect in the silicon channel, through voltages applied on the gate and source–drain, result in the optical phase modulation in MOSFET and TFET. Phase shift of π radian at a length of 1.2 mm and 0.21 mm is obtained in MOSFET and TFET, respectively. The proposed concept has the potential to enable multifunctionality of the mature field effect transistors. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceApplied Physics B: Lasers and Opticsen_US
dc.subjectModulationen_US
dc.subjectMOSFET devicesen_US
dc.subjectNanotechnologyen_US
dc.subjectOptoelectronic devicesen_US
dc.subjectPlasmonicsen_US
dc.subjectSurface plasmonsen_US
dc.subjectTunnel field effect transistorsen_US
dc.subjectCharge carrier dynamicsen_US
dc.subjectConductivity modulationen_US
dc.subjectDielectric interfaceen_US
dc.subjectOperating wavelengthen_US
dc.subjectOptical phase modulationen_US
dc.subjectPlasma dispersion effectsen_US
dc.subjectSemiconductor channelsen_US
dc.subjectSemiconductor field-effect transistorsen_US
dc.subjectTransistorsen_US
dc.titleGuiding and controlling light at nanoscale in field effect transistoren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: