Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/5756
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Bishnu, Abhijeet | en_US |
dc.contributor.author | Bhatia, Vimal | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-17T15:43:43Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-17T15:43:43Z | - |
dc.date.issued | 2019 | - |
dc.identifier.citation | Bishnu, A., & Bhatia, V. (2019). Convergence analysis of zero attracting natural gradient non-parametric maximum likelihood algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(4), 712-716. doi:10.1109/TCSII.2018.2881322 | en_US |
dc.identifier.issn | 1549-7747 | - |
dc.identifier.other | EID(2-s2.0-85056601105) | - |
dc.identifier.uri | https://doi.org/10.1109/TCSII.2018.2881322 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/5756 | - |
dc.description.abstract | Recently, a zero-attractor natural gradient non-parametric maximum likelihood (ZA-NG-NPML) algorithm has been proposed for sparse channel estimation in the presence of non-Gaussian noise. The ZA-NG-NPML outperforms existing sparse channel estimation algorithms in the presence of non-Gaussian noise in terms of mean square error (MSE) and convergence. In this brief, a rigorous second order convergence analysis of ZA-NG-NPML algorithm is presented and upper bound on the steady state mean square deviation of active and inactive taps is derived. Further, we also derive the upper bound on the steady state excess MSE for ZA-NG-NPML. Simulation results validate the derived upper bound. © 2004-2012 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.source | IEEE Transactions on Circuits and Systems II: Express Briefs | en_US |
dc.subject | Approximation theory | en_US |
dc.subject | Channel estimation | en_US |
dc.subject | Gaussian distribution | en_US |
dc.subject | Gaussian noise (electronic) | en_US |
dc.subject | Mathematical transformations | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Convergence | en_US |
dc.subject | Excess mean square error | en_US |
dc.subject | Matching pursuit algorithms | en_US |
dc.subject | Mean square deviation | en_US |
dc.subject | Non-Gaussian noise | en_US |
dc.subject | Non-parametric | en_US |
dc.subject | Simulation | en_US |
dc.subject | Steady state | en_US |
dc.subject | Upper Bound | en_US |
dc.subject | Zero-attracting | en_US |
dc.subject | Maximum likelihood estimation | en_US |
dc.title | Convergence Analysis of Zero Attracting Natural Gradient Non-Parametric Maximum Likelihood Algorithm | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Electrical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: