Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5756
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBishnu, Abhijeeten_US
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:43Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:43Z-
dc.date.issued2019-
dc.identifier.citationBishnu, A., & Bhatia, V. (2019). Convergence analysis of zero attracting natural gradient non-parametric maximum likelihood algorithm. IEEE Transactions on Circuits and Systems II: Express Briefs, 66(4), 712-716. doi:10.1109/TCSII.2018.2881322en_US
dc.identifier.issn1549-7747-
dc.identifier.otherEID(2-s2.0-85056601105)-
dc.identifier.urihttps://doi.org/10.1109/TCSII.2018.2881322-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5756-
dc.description.abstractRecently, a zero-attractor natural gradient non-parametric maximum likelihood (ZA-NG-NPML) algorithm has been proposed for sparse channel estimation in the presence of non-Gaussian noise. The ZA-NG-NPML outperforms existing sparse channel estimation algorithms in the presence of non-Gaussian noise in terms of mean square error (MSE) and convergence. In this brief, a rigorous second order convergence analysis of ZA-NG-NPML algorithm is presented and upper bound on the steady state mean square deviation of active and inactive taps is derived. Further, we also derive the upper bound on the steady state excess MSE for ZA-NG-NPML. Simulation results validate the derived upper bound. © 2004-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Circuits and Systems II: Express Briefsen_US
dc.subjectApproximation theoryen_US
dc.subjectChannel estimationen_US
dc.subjectGaussian distributionen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectMathematical transformationsen_US
dc.subjectMean square erroren_US
dc.subjectConvergenceen_US
dc.subjectExcess mean square erroren_US
dc.subjectMatching pursuit algorithmsen_US
dc.subjectMean square deviationen_US
dc.subjectNon-Gaussian noiseen_US
dc.subjectNon-parametricen_US
dc.subjectSimulationen_US
dc.subjectSteady stateen_US
dc.subjectUpper Bounden_US
dc.subjectZero-attractingen_US
dc.subjectMaximum likelihood estimationen_US
dc.titleConvergence Analysis of Zero Attracting Natural Gradient Non-Parametric Maximum Likelihood Algorithmen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: