Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5762
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAnand, Vijayen_US
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:45Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:45Z-
dc.date.issued2019-
dc.identifier.citationAnand, V., & Kanhangad, V. (2019). Pore detection in high-resolution fingerprint images using deep residual network. Journal of Electronic Imaging, 28(2) doi:10.1117/1.JEI.28.2.020502en_US
dc.identifier.issn1017-9909-
dc.identifier.otherEID(2-s2.0-85064151857)-
dc.identifier.urihttps://doi.org/10.1117/1.JEI.28.2.020502-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5762-
dc.description.abstractWe present a residual learning-based convolutional neural network, referred to as DeepResPore, for detection of pores in high-resolution fingerprint images. Specifically, the proposed DeepResPore model generates a pore intensity map from the input fingerprint image. Subsequently, the local maxima filter is operated on the pore intensity map to identify the pore coordinates. The results of our experiments indicate that the proposed approach is effective in extracting pores with a true detection rate of 94.49% on test set I and 93.78% on test set II of the publicly available PolyU HRF dataset at a false detection rate of 8.5%. Most importantly, the proposed approach achieves state-of-the-art performance on both test sets. © 2019 SPIE and IS&T.en_US
dc.language.isoenen_US
dc.publisherSPIEen_US
dc.sourceJournal of Electronic Imagingen_US
dc.subjectBiometricsen_US
dc.subjectNeural networksen_US
dc.subjectStatistical testsen_US
dc.subjectConvolutional neural networken_US
dc.subjectDetection ratesen_US
dc.subjectFalse detectionsen_US
dc.subjectFingerprint imagesen_US
dc.subjectHigh resolutionen_US
dc.subjectLocal maximumen_US
dc.subjectState-of-the-art performanceen_US
dc.subjectTest setsen_US
dc.subjectPalmprint recognitionen_US
dc.titlePore detection in high-resolution fingerprint images using deep residual networken_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: