Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5770
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:48Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:48Z-
dc.date.issued2019-
dc.identifier.citationSharma, R., Sircar, P., & Pachori, R. B. (2019). A NEW TECHNIQUE for CLASSIFICATION of FOCAL and NONFOCAL EEG SIGNALS USING HIGHER-ORDER SPECTRA. Journal of Mechanics in Medicine and Biology, 19(1) doi:10.1142/S0219519419400104en_US
dc.identifier.issn0219-5194-
dc.identifier.otherEID(2-s2.0-85061264352)-
dc.identifier.urihttps://doi.org/10.1142/S0219519419400104-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5770-
dc.description.abstractEpilepsy is a neurological disorder characterized by epileptic seizures inside the human brain. An authentic localization of epileptogenic area will help the clinicians for a successful epilepsy surgery. The epileptogenic area can be characterized by the focal electroencephalogram (EEG) signals. Hence, in this article, a bispectrum-based approach is implemented to characterize the focal EEG signals. The highest twenty-five magnitudes of bispectrum from the principal domain are used as features. The locality sensitive discriminant analysis (LSDA), data reduction technique, is implemented to reduce the number of attributes. The ranked LSDA attributes are input to the support vector machine (SVM) classifier yielding 96.2% classification accuracy using the entire Bern Barcelona EEG database. Hence, the proposed technique can be employed to confirm the epileptogenic area for successful epilepsy surgery and can be employed in the community health care centers and hospitals. © 2019 World Scientific Publishing Company.en_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publishing Co. Pte Ltden_US
dc.sourceJournal of Mechanics in Medicine and Biologyen_US
dc.subjectDiscriminant analysisen_US
dc.subjectElectroencephalographyen_US
dc.subjectNeurologyen_US
dc.subjectSupport vector machinesen_US
dc.subjectSurgeryen_US
dc.subjectBispectrumen_US
dc.subjectClassification accuracyen_US
dc.subjectEEG signalsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEpilepsyen_US
dc.subjectLocality sensitive discriminant analysisen_US
dc.subjectLSDAen_US
dc.subjectNeurological disordersen_US
dc.subjectBiomedical signal processingen_US
dc.titleA NEW TECHNIQUE for CLASSIFICATION of FOCAL and NONFOCAL EEG SIGNALS USING HIGHER-ORDER SPECTRAen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: