Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKanhangad, Viveken_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:43:49Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:43:49Z-
dc.date.issued2019-
dc.identifier.citationMaheshwari, S., Kanhangad, V., Pachori, R. B., Bhandary, S. V., & Acharya, U. R. (2019). Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques. Computers in Biology and Medicine, 105, 72-80. doi:10.1016/j.compbiomed.2018.11.028en_US
dc.identifier.issn0010-4825-
dc.identifier.otherEID(2-s2.0-85058951969)-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2018.11.028-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5771-
dc.description.abstractBackground and objective: Glaucoma is a ocular disorder which causes irreversible damage to the retinal nerve fibers. The diagnosis of glaucoma is important as it may help to slow down the progression. The available clinical methods and imaging techniques are manual and require skilled supervision. For the purpose of mass screening, an automated system is needed for glaucoma diagnosis which is fast, accurate, and helps in reducing the burden on experts. Methods: In this work, we present a bit-plane slicing (BPS) and local binary pattern (LBP) based novel approach for glaucoma diagnosis. Firstly, our approach separates the red (R), green (G), and blue (B) channels from the input color fundus image and splits the channels into bit planes. Secondly, we extract LBP based statistical features from each of the bit planes of the individual channels. Thirdly, these features from the individual channels are fed separately to three different support vector machines (SVMs) for classification. Finally, the decisions from the individual SVMs are fused at the decision level to classify the input fundus image into normal or glaucoma class. Results: Our experimental results suggest that the proposed approach is effective in discriminating normal and glaucoma cases with an accuracy of 99.30% using 10-fold cross validation. Conclusions: The developed system is ready to be tested on large and diverse databases and can assist the ophthalmologists in their daily screening to confirm their diagnosis, thereby increasing accuracy of diagnosis. © 2018 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceComputers in Biology and Medicineen_US
dc.subjectAutomationen_US
dc.subjectSupport vector machinesen_US
dc.subject10-fold cross-validationen_US
dc.subjectBit-plane slicingen_US
dc.subjectDecision level fusionen_US
dc.subjectGlaucomaen_US
dc.subjectLocal binary pattern (LBP)en_US
dc.subjectLocal binary patternsen_US
dc.subjectStatistical featuresen_US
dc.subjectSupport vector machine (SVMs)en_US
dc.subjectOphthalmologyen_US
dc.subjectArticleen_US
dc.subjectautomationen_US
dc.subjectbit plane slicingen_US
dc.subjectclassification algorithmen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectentropyen_US
dc.subjecteye fundusen_US
dc.subjectfeature extractionen_US
dc.subjectglaucomaen_US
dc.subjecthumanen_US
dc.subjectlocal binary patternen_US
dc.subjectmachine learningen_US
dc.subjectpriority journalen_US
dc.subjectreceiver operating characteristicen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsupport vector machineen_US
dc.subjectdiagnostic imagingen_US
dc.subjecteye fundusen_US
dc.subjectglaucomaen_US
dc.subjectsupport vector machineen_US
dc.subjectFundus Oculien_US
dc.subjectGlaucomaen_US
dc.subjectHumansen_US
dc.subjectImage Interpretation, Computer-Assisteden_US
dc.subjectSupport Vector Machineen_US
dc.titleAutomated glaucoma diagnosis using bit-plane slicing and local binary pattern techniquesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: