Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5853
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:44:22Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:44:22Z-
dc.date.issued2018-
dc.identifier.citationSharma, M., Sharma, P., Pachori, R. B., & Acharya, U. R. (2018). Dual-tree complex wavelet transform-based features for automated alcoholism identification. International Journal of Fuzzy Systems, 20(4), 1297-1308. doi:10.1007/s40815-018-0455-xen_US
dc.identifier.issn1562-2479-
dc.identifier.otherEID(2-s2.0-85044289396)-
dc.identifier.urihttps://doi.org/10.1007/s40815-018-0455-x-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5853-
dc.description.abstractA novel automated system for the identification of alcoholic subjects using electroencephalography (EEG) signals is proposed in this study. The proposed system employed dual-tree complex wavelet transform (DTCWT)-based features and sequential minimal optimization support vector machine (SMO-SVM), least square support vector machine (LS-SVM), and fuzzy Sugeno classifiers (FSC) for the automated identification of alcoholic EEG signals. The EEG signals are decomposed into several sub-bands (SBs) using DTCWT. The features extracted from DTCWT-based SBs are fed to FSC, SMO-SVM, and LS-SVM classifiers to evaluate the best performing classifier. The tenfold cross-validation scheme is used to mitigate the overfitting of the model. We have obtained the highest classification accuracy (CAC) of 97.91%, the area under receiver operating characteristic curve (AU-ROC) of 0.999 and Matthews correlation coefficient (MCC) of 0.958 for our proposed alcoholic diagnosis model. Our alcoholism detection system performed better than the existing systems in terms of all three measures: CAC, AU-ROC, and MCC. © 2018, Taiwan Fuzzy Systems Association and Springer-Verlag GmbH Germany, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.sourceInternational Journal of Fuzzy Systemsen_US
dc.subjectAutomationen_US
dc.subjectBiomedical signal processingen_US
dc.subjectComputer aided diagnosisen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectOptimizationen_US
dc.subjectPartial dischargesen_US
dc.subjectSignal processingen_US
dc.subjectWavelet transformsen_US
dc.subjectAutomated identificationen_US
dc.subjectComplex wavelet transformsen_US
dc.subjectComputer aided diagnosis systemsen_US
dc.subjectDual Tree Complex Wavelet Transform (DTCWT)en_US
dc.subjectDual-tree complex wavelet transformen_US
dc.subjectLeast Square Support Vector Machine (LS-SVM)en_US
dc.subjectReceiver operating characteristic curvesen_US
dc.subjectSequential minimal optimizationen_US
dc.subjectSupport vector machinesen_US
dc.titleDual-Tree Complex Wavelet Transform-Based Features for Automated Alcoholism Identificationen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: