Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/5855
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Singh, Lalit | en_US |
dc.contributor.author | Kumar, Mukesh | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-17T15:44:22Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-17T15:44:22Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Singh, L., Sharma, T., & Kumar, M. (2018). Controlled hybridization of plasmonic and optical modes for low-loss nano-scale optical confinement with ultralow dispersion. IEEE Journal of Quantum Electronics, 54(2) doi:10.1109/JQE.2018.2809461 | en_US |
dc.identifier.issn | 0018-9197 | - |
dc.identifier.other | EID(2-s2.0-85042696441) | - |
dc.identifier.uri | https://doi.org/10.1109/JQE.2018.2809461 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/5855 | - |
dc.description.abstract | A photonic-waveguide at real nano-scales based on the concept of hybridization of plasmonic and photonic modes is designed and fabricated. A high-index layer of silicon to control vertical and lateral confinement is introduced under the nano-confinement layer of thermally grown SiO2, which together with optimized waveguide-width provides low-loss guidance of hybrid-plasmonic-mode. A 11-nm thick SiO2 on silicon provides us an optical-confinement at real nano-scales with an acceptably low loss of 7 dB/cm. Also, the proposed device exhibits ultra-low dispersion on introducing a grating in the silicon layer. In addition, the dispersion value 'crosses zero-dispersion' many times over a broad range of wavelength. © 1965-2012 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.source | IEEE Journal of Quantum Electronics | en_US |
dc.subject | Electric losses | en_US |
dc.subject | Nanophotonics | en_US |
dc.subject | Nanosensors | en_US |
dc.subject | Nanotechnology | en_US |
dc.subject | Optical losses | en_US |
dc.subject | Optical sensors | en_US |
dc.subject | Optical waveguides | en_US |
dc.subject | Optoelectronic devices | en_US |
dc.subject | Plasmonics | en_US |
dc.subject | Plasmons | en_US |
dc.subject | Silica | en_US |
dc.subject | Silicon | en_US |
dc.subject | Silicon oxides | en_US |
dc.subject | Waveguides | en_US |
dc.subject | Dispersion compensation devices | en_US |
dc.subject | High-index layers | en_US |
dc.subject | Hybrid plasmonic waveguides | en_US |
dc.subject | Indexes | en_US |
dc.subject | Lateral confinement | en_US |
dc.subject | Optical confinement | en_US |
dc.subject | Optical device fabrication | en_US |
dc.subject | Photonic waveguides | en_US |
dc.subject | Dispersion (waves) | en_US |
dc.title | Controlled Hybridization of Plasmonic and Optical Modes for Low-Loss Nano-Scale Optical Confinement with Ultralow Dispersion | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Electrical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: