Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5870
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, T. Sunilen_US
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:44:29Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:44:29Z-
dc.date.issued2018-
dc.identifier.citationKumar, T. S., & Kanhangad, V. (2018). Detection of electrocardiographic changes in partial epileptic patients using local binary pattern based composite feature. Australasian Physical and Engineering Sciences in Medicine, 41(1), 209-216. doi:10.1007/s13246-017-0605-8en_US
dc.identifier.issn0158-9938-
dc.identifier.otherEID(2-s2.0-85035803607)-
dc.identifier.urihttps://doi.org/10.1007/s13246-017-0605-8-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5870-
dc.description.abstractIn this paper, we propose a novel method for detecting electrocardiographic (ECG) changes in partial epileptic patients using a composite feature set. At the core of our approach is a local binary pattern (LBP) based feature representation containing a set of statistical features derived from the distribution of LBPs of the ECG signal. In order to enhance the discriminating power, a set of statistical features are also extracted from the original ECG signal. The composite feature is then generated by combining the two homogeneous feature sets. The discriminating ability of the proposed composite feature is investigated using two different classifiers namely, support vector machine and a bagged ensemble of decision trees. Results from the experimental evaluation on the publicly available MIT-BIH ECG dataset demonstrate the superiority of the proposed features over conventional histogram based LBP features. Our results also show that the proposed approach provides better classification accuracy than methods existing in the literature for classification of normal and partial epileptic beats in ECG. © 2017, Australasian College of Physical Scientists and Engineers in Medicine.en_US
dc.language.isoenen_US
dc.publisherSpringer Netherlandsen_US
dc.sourceAustralasian Physical and Engineering Sciences in Medicineen_US
dc.subjectDecision treesen_US
dc.subjectElectrocardiographyen_US
dc.subjectFeature extractionen_US
dc.subjectElectrocardiographen_US
dc.subjectLocal binary patternsen_US
dc.subjectNormal beaten_US
dc.subjectPartial epileptic beaten_US
dc.subjectStatistical featuresen_US
dc.subjectBiomedical signal processingen_US
dc.subjectaccuracyen_US
dc.subjectadulten_US
dc.subjectArticleen_US
dc.subjectbootstrap aggregatingen_US
dc.subjectclassification accuracyen_US
dc.subjectclassifieren_US
dc.subjectclinical articleen_US
dc.subjectdecision treeen_US
dc.subjectelectrocardiographyen_US
dc.subjectfemaleen_US
dc.subjectfocal epilepsyen_US
dc.subjecthistogramen_US
dc.subjecthumanen_US
dc.subjectlearning algorithmen_US
dc.subjectlocal binary pattern based composite featureen_US
dc.subjectmaleen_US
dc.subjectmathematical computingen_US
dc.subjectprobabilityen_US
dc.subjectstatistical conceptsen_US
dc.subjectstatistical distributionen_US
dc.subjectstatistical parametersen_US
dc.subjectsupport vector machineen_US
dc.subjectalgorithmen_US
dc.subjectentropyen_US
dc.subjectepilepsyen_US
dc.subjectmiddle ageden_US
dc.subjectreproducibilityen_US
dc.subjectsignal processingen_US
dc.subjectAdulten_US
dc.subjectAlgorithmsen_US
dc.subjectElectrocardiographyen_US
dc.subjectEntropyen_US
dc.subjectEpilepsyen_US
dc.subjectHumansen_US
dc.subjectMiddle Ageden_US
dc.subjectReproducibility of Resultsen_US
dc.subjectSignal Processing, Computer-Assisteden_US
dc.subjectSupport Vector Machineen_US
dc.titleDetection of electrocardiographic changes in partial epileptic patients using local binary pattern based composite featureen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: