Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5918
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBishnu, Abhijeeten_US
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:44:50Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:44:50Z-
dc.date.issued2017-
dc.identifier.citationBishnu, A., & Bhatia, V. (2017). Sparse channel estimation for interference limited OFDM systems and its convergence analysis. IEEE Access, 5, 17781-17794. doi:10.1109/ACCESS.2017.2748144en_US
dc.identifier.issn2169-3536-
dc.identifier.otherEID(2-s2.0-85030642730)-
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2017.2748144-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5918-
dc.description.abstractWireless communication channels are highly prone to interference in addition to the presence of additive white Gaussian noise (AWGN). Stochastic gradient (SG)-based non-parametric maximum likelihood (NPML) estimator, gives better channel estimates in the presence of Gaussian mixture (AWGN plus interference) noise processes, for subsequent use by the channel equalizer. However, for sparse channels, the SG-NPML-based channel estimator requires large iterations to converge. In this paper, we propose a natural gradient (NG)-based channel estimator for sparse channel estimation in the presence of high interference. We propose a generalized p th order warping transformation on channel coefficients space and then calculate the Riemannian metric tensor, thereby resulting in faster convergence in interference limited channels. The proposed algorithm is applied for IEEE 802.22 (based on orthogonal frequency division multiplexing) channel estimation in the presence of interference. Extensive simulations and experimental results show that the proposed NG-based algorithm converges faster than SG-NPML for the same mean squared error (MSE) floor with similar computational complexity per iteration as an SG-NPML algorithm. We also present convergence analysis of proposed NG-NPML algorithm in the presence of Gaussian mixture noise and derive an analytical expression for the steady-state MSE. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Accessen_US
dc.subjectFrequency estimationen_US
dc.subjectGaussian distributionen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectGeometryen_US
dc.subjectIterative methodsen_US
dc.subjectMaximum likelihooden_US
dc.subjectMaximum likelihood estimationen_US
dc.subjectMean square erroren_US
dc.subjectMeasurementsen_US
dc.subjectOrthogonal frequency division multiplexingen_US
dc.subjectStochastic systemsen_US
dc.subjectWave interferenceen_US
dc.subjectWhite noiseen_US
dc.subjectWireless telecommunication systemsen_US
dc.subjectAlgorithm design and analysisen_US
dc.subjectConvergenceen_US
dc.subjectConvergence analysisen_US
dc.subjectGaussian mixture noiseen_US
dc.subjectIEEE 802.22en_US
dc.subjectMatching pursuit algorithmsen_US
dc.subjectNatural gradienten_US
dc.subjectNon-parametricen_US
dc.subjectRiemannian geometryen_US
dc.subjectSparse channel estimationsen_US
dc.subjectChannel estimationen_US
dc.titleSparse Channel Estimation for Interference Limited OFDM Systems and Its Convergence Analysisen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: