Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5926
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:44:53Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:44:53Z-
dc.date.issued2017-
dc.identifier.citationMaheshwari, S., Pachori, R. B., Kanhangad, V., Bhandary, S. V., & Acharya, U. R. (2017). Iterative variational mode decomposition based automated detection of glaucoma using fundus images. Computers in Biology and Medicine, 88, 142-149. doi:10.1016/j.compbiomed.2017.06.017en_US
dc.identifier.issn0010-4825-
dc.identifier.otherEID(2-s2.0-85022073667)-
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2017.06.017-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5926-
dc.description.abstractGlaucoma is one of the leading causes of permanent vision loss. It is an ocular disorder caused by increased fluid pressure within the eye. The clinical methods available for the diagnosis of glaucoma require skilled supervision. They are manual, time consuming, and out of reach of common people. Hence, there is a need for an automated glaucoma diagnosis system for mass screening. In this paper, we present a novel method for an automated diagnosis of glaucoma using digital fundus images. Variational mode decomposition (VMD) method is used in an iterative manner for image decomposition. Various features namely, Kapoor entropy, Renyi entropy, Yager entropy, and fractal dimensions are extracted from VMD components. ReliefF algorithm is used to select the discriminatory features and these features are then fed to the least squares support vector machine (LS-SVM) for classification. Our proposed method achieved classification accuracies of 95.19% and 94.79% using three-fold and ten-fold cross-validation strategies, respectively. This system can aid the ophthalmologists in confirming their manual reading of classes (glaucoma or normal) using fundus images. © 2017 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceComputers in Biology and Medicineen_US
dc.subjectAutomationen_US
dc.subjectEntropyen_US
dc.subjectFractal dimensionen_US
dc.subjectFractalsen_US
dc.subjectIterative methodsen_US
dc.subjectSupport vector machinesen_US
dc.subjectAutomated detectionen_US
dc.subjectAutomated diagnosisen_US
dc.subjectClassification accuracyen_US
dc.subjectDigital fundus imagesen_US
dc.subjectGlaucomaen_US
dc.subjectImage decompositionen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectMode decompositionen_US
dc.subjectOphthalmologyen_US
dc.subjectArticleen_US
dc.subjectcontrolled studyen_US
dc.subjectentropyen_US
dc.subjecteye fundusen_US
dc.subjectfractal analysisen_US
dc.subjectglaucomaen_US
dc.subjecthumanen_US
dc.subjectilluminationen_US
dc.subjectimage analysisen_US
dc.subjectmajor clinical studyen_US
dc.subjectmass screeningen_US
dc.subjectpriority journalen_US
dc.subjectsignal processingen_US
dc.subjectsupport vector machineen_US
dc.subjectalgorithmen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectdiagnostic imagingen_US
dc.subjectglaucomaen_US
dc.subjectleast square analysisen_US
dc.subjectproceduresen_US
dc.subjectretinaen_US
dc.subjectvisual system examinationen_US
dc.subjectAlgorithmsen_US
dc.subjectDiagnostic Techniques, Ophthalmologicalen_US
dc.subjectEntropyen_US
dc.subjectFundus Oculien_US
dc.subjectGlaucomaen_US
dc.subjectHumansen_US
dc.subjectImage Interpretation, Computer-Assisteden_US
dc.subjectLeast-Squares Analysisen_US
dc.subjectRetinaen_US
dc.titleIterative variational mode decomposition based automated detection of glaucoma using fundus imagesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: