Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5927
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Ashishen_US
dc.contributor.authorDixit, Tejendraen_US
dc.contributor.authorPalani, Anand Iyamperumalen_US
dc.contributor.authorSingh, Vipulen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:44:54Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:44:54Z-
dc.date.issued2017-
dc.identifier.citationKumar, A., Dixit, T., Palani, I. A., Nakamura, D., Higashihata, M., & Singh, V. (2017). Utilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistor. Physica E: Low-Dimensional Systems and Nanostructures, 93, 97-104. doi:10.1016/j.physe.2017.06.005en_US
dc.identifier.issn1386-9477-
dc.identifier.otherEID(2-s2.0-85020253346)-
dc.identifier.urihttps://doi.org/10.1016/j.physe.2017.06.005-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5927-
dc.description.abstractHydrothermally processed highly photosensitive ZnO nanorods based plasmon field effect transistors (PFETs) have been demonstrated utilizing the surface plasmon resonance coupling of Au and Pt nanoparticles at Au/Pt and ZnO interface. A significantly enhanced photocurrent was observed due to the plasmonic effect of the metal nanoparticles (NPs). The Pt coated PFETs showed Ion/Ioff ratio more than 3 × 104 under the dark condition, with field-effect mobility of 26 cm2 V−1 s−1 and threshold voltage of −2.7 V. Moreover, under the illumination of UV light (λ = 350 nm) the PFET revealed photocurrent gain of 105 under off-state (−5 V) of operation. Additionally, the electrical performance of PFETs was investigated in detail on the basis of charge transfer at metal/ZnO interface. The ZnO nanorods growth temperature was preserved at 110 °C which allowed a low temperature, economical and simple method to develop highly photosensitive ZnO nanorods network based PFETs for large scale production. © 2017en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourcePhysica E: Low-Dimensional Systems and Nanostructuresen_US
dc.subjectCharge transferen_US
dc.subjectGolden_US
dc.subjectLight sensitive materialsen_US
dc.subjectLow temperature productionen_US
dc.subjectMetal nanoparticlesen_US
dc.subjectNanoparticlesen_US
dc.subjectNanorodsen_US
dc.subjectPhotosensitivityen_US
dc.subjectPlasmonsen_US
dc.subjectPlatinumen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectTemperatureen_US
dc.subjectThreshold voltageen_US
dc.subjectZinc oxideen_US
dc.subjectElectrical performanceen_US
dc.subjectField-effect mobilitiesen_US
dc.subjectLarge scale productionsen_US
dc.subjectLow temperaturesen_US
dc.subjectPlasmonic effectsen_US
dc.subjectSurface plasmonsen_US
dc.subjectZno nanorod networksen_US
dc.subjectZnO Nanorods Networksen_US
dc.subjectField effect transistorsen_US
dc.titleUtilization of surface plasmon resonance of Au/Pt nanoparticles for highly photosensitive ZnO nanorods network based plasmon field effect transistoren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: