Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5928
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:44:54Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:44:54Z-
dc.date.issued2017-
dc.identifier.citationBhattacharyya, A., & Pachori, R. B. (2017). A multivariate approach for patient-specific EEG seizure detection using empirical wavelet transform. IEEE Transactions on Biomedical Engineering, 64(9), 2003-2015. doi:10.1109/TBME.2017.2650259en_US
dc.identifier.issn0018-9294-
dc.identifier.otherEID(2-s2.0-85014700835)-
dc.identifier.urihttps://doi.org/10.1109/TBME.2017.2650259-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5928-
dc.description.abstractObjective: This paper investigates the multivariate oscillatory nature of electroencephalogram (EEG) signals in adaptive frequency scales for epileptic seizure detection. Methods: The empirical wavelet transform (EWT) has been explored for the multivariate signals in order to determine the joint instantaneous amplitudes and frequencies in signal adaptive frequency scales. The proposed multivariate extension of EWT has been studied on multivariate multicomponent synthetic signal, as well as on multivariate EEG signals of Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) scalp EEG database. In a moving-window-based analysis, 2-s-duration multivariate EEG signal epochs containing five automatically selected channels have been decomposed and three features have been extracted from each 1-s part of the 2-s-duration joint instantaneous amplitudes of multivariate EEG signals. The extracted features from each oscillatory level have been processed using a proposed feature processing step and joint features have been computed in order to achieve better discrimination of seizure and seizure-free EEG signal epochs. Results: The proposed detection method has been evaluated over 177 h of EEG records using six classifiers. We have achieved average sensitivity, specificity, and accuracy values as 97.91%, 99.57%, and 99.41%, respectively, using tenfold cross-validation method, which are higher than the compared state of art methods studied on this database. Conclusion: Efficient detection of epileptic seizure is achieved when seizure events appear for long duration in hours long EEG recordings. Significance: The proposed method develops time-frequency plane for multivariate signals and builds patient-specific models for EEG seizure detection. © 1964-2012 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceIEEE Transactions on Biomedical Engineeringen_US
dc.subjectClassifiersen_US
dc.subjectDynamic frequency scalingen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeurophysiologyen_US
dc.subjectWavelet transformsen_US
dc.subjectChannel selectionen_US
dc.subjectCross-validation methodsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectempirical wavelet transform (EWT)en_US
dc.subjectEpileptic seizure detectionen_US
dc.subjectFeature processingen_US
dc.subjectInstantaneous amplitudeen_US
dc.subjectMassachusetts Institute of Technologyen_US
dc.subjectElectroencephalographyen_US
dc.subjectadolescenten_US
dc.subjectadulten_US
dc.subjectArticleen_US
dc.subjectautomationen_US
dc.subjectchilden_US
dc.subjectclassifieren_US
dc.subjectclinical articleen_US
dc.subjectdata baseen_US
dc.subjectelectroencephalogramen_US
dc.subjectempirical wavelet transformen_US
dc.subjectempiricismen_US
dc.subjectfemaleen_US
dc.subjecthumanen_US
dc.subjectmaleen_US
dc.subjectMassachusettsen_US
dc.subjectmedical recorden_US
dc.subjectoscillationen_US
dc.subjectpreschool childen_US
dc.subjectschool childen_US
dc.subjectseizureen_US
dc.subjectsensitivity and specificityen_US
dc.subjectvalidation studyen_US
dc.subjectwavelet analysisen_US
dc.subjectyoung adulten_US
dc.subjectalgorithmen_US
dc.subjectautomated pattern recognitionen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectcomputer simulationen_US
dc.subjectelectroencephalographyen_US
dc.subjectmultivariate analysisen_US
dc.subjectproceduresen_US
dc.subjectSeizuresen_US
dc.subjectstatistical analysisen_US
dc.subjectstatistical modelen_US
dc.subjectAlgorithmsen_US
dc.subjectComputer Simulationen_US
dc.subjectData Interpretation, Statisticalen_US
dc.subjectDiagnosis, Computer-Assisteden_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectModels, Statisticalen_US
dc.subjectMultivariate Analysisen_US
dc.subjectPattern Recognition, Automateden_US
dc.subjectSeizuresen_US
dc.subjectWavelet Analysisen_US
dc.titleA Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transformen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: