Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5940
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Vipinen_US
dc.contributor.authorPriya, Tanvien_US
dc.contributor.authorYadav, Abhishek Kumaren_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:00Z-
dc.date.issued2017-
dc.identifier.citationGupta, V., Priya, T., Yadav, A. K., Pachori, R. B., & Rajendra Acharya, U. (2017). Automated detection of focal EEG signals using features extracted from flexible analytic wavelet transform. Pattern Recognition Letters, 94, 180-188. doi:10.1016/j.patrec.2017.03.017en_US
dc.identifier.issn0167-8655-
dc.identifier.otherEID(2-s2.0-85016403383)-
dc.identifier.urihttps://doi.org/10.1016/j.patrec.2017.03.017-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5940-
dc.description.abstractEpilepsy is a neurological disease which is difficult to diagnose accurately. An authentic detection of focal epilepsy will help the clinicians to provide proper treatment for the patients. Generally, focal electroencephalogram (EEG) signals are used to diagnose the epilepsy. In this paper, we have developed an automated system for the detection of focal EEG signals using differencing and flexible analytic wavelet transform (FAWT) methods. The differenced EEG signals are subjected to 15 levels of FAWT. Various entropies namely cross correntropy, Stein's unbiased risk estimate (SURE) entropy, and log energy entropy are extracted from the reconstructed original signal and 16 sub-band signals. The statistically significant features are obtained from Kruskal–Wallis test based on (p < 0.05). K-nearest neighbor (KNN) and least squares support vector machine (LS-SVM) classifiers with different distances and kernels respectively are used for automated diagnosis. In the proposed methodology, we have achieved classification accuracy of 94.41% in detecting focal EEG signals using LS-SVM classifier with ten-fold cross validation strategy. © 2017 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourcePattern Recognition Lettersen_US
dc.subjectAutomationen_US
dc.subjectDiagnosisen_US
dc.subjectElectroencephalographyen_US
dc.subjectEntropyen_US
dc.subjectNearest neighbor searchen_US
dc.subjectNeurologyen_US
dc.subjectPatient treatmenten_US
dc.subjectRisk perceptionen_US
dc.subjectSignal detectionen_US
dc.subjectSupport vector machinesen_US
dc.subjectWavelet transformsen_US
dc.subject41A05en_US
dc.subject41A10en_US
dc.subject65D05en_US
dc.subject65D17en_US
dc.subjectFAWTen_US
dc.subjectBiomedical signal processingen_US
dc.titleAutomated detection of focal EEG signals using features extracted from flexible analytic wavelet transformen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: