Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5944
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:01Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:01Z-
dc.date.issued2017-
dc.identifier.citationTiwari, A. K., Pachori, R. B., Kanhangad, V., & Panigrahi, B. K. (2017). Automated diagnosis of epilepsy using key-point-based local binary pattern of EEG signals. IEEE Journal of Biomedical and Health Informatics, 21(4), 888-896. doi:10.1109/JBHI.2016.2589971en_US
dc.identifier.issn2168-2194-
dc.identifier.otherEID(2-s2.0-85023624919)-
dc.identifier.urihttps://doi.org/10.1109/JBHI.2016.2589971-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5944-
dc.description.abstractThe electroencephalogram (EEG) signals are commonly used for diagnosis of epilepsy. In this paper, we present a new methodology for EEG-based automated diagnosis of epilepsy. Our method involves detection of key points at multiple scales in EEG signals using a pyramid of difference of Gaussian filtered signals. Local binary patterns (LBPs) are computed at these key points and the histogram of these patterns are considered as the feature set, which is fed to the support vector machine (SVM) for the classification of EEG signals. The proposed methodology has been investigated for the four well-known classification problems namely, 1) normal and epileptic seizure, 2) epileptic seizure and seizure free, 3) normal, epileptic seizure, and seizure free, and 4) epileptic seizure and nonseizure EEG signals using publically available university of Bonn EEG database. Our experimental results in terms of classification accuracies have been compared with existing methods for the classification of the aforementioned problems. Further, performance evaluation on another EEG dataset shows that our approach is effective for classification of seizure and seizure-free EEG signals. The proposed methodology based on the LBP computed at key points is simple and easy to implement for real-time epileptic seizure detection. © 2013 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Journal of Biomedical and Health Informaticsen_US
dc.subjectClassification (of information)en_US
dc.subjectComputer aided diagnosisen_US
dc.subjectContent based retrievalen_US
dc.subjectElectroencephalographyen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeurologyen_US
dc.subjectNeurophysiologyen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectAutomated diagnosisen_US
dc.subjectClassification accuracyen_US
dc.subjectComputer assisted diagnosisen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectepilepsyen_US
dc.subjectEpileptic seizure detectionen_US
dc.subjectEpileptic seizuresen_US
dc.subjectLocal binary patternsen_US
dc.subjectBiomedical signal processingen_US
dc.subjectaccuracyen_US
dc.subjectArticleen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectelectrocardiographyen_US
dc.subjectelectroencephalographyen_US
dc.subjectelectromyographyen_US
dc.subjectepilepsyen_US
dc.subjectepileptic focusen_US
dc.subjecthistogramen_US
dc.subjectmathematical phenomenaen_US
dc.subjectmental performanceen_US
dc.subjectpredictive valueen_US
dc.subjectseizureen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsupport vector machineen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectelectroencephalographyen_US
dc.subjectepilepsyen_US
dc.subjectfactual databaseen_US
dc.subjecthumanen_US
dc.subjectproceduresen_US
dc.subjectsignal processingen_US
dc.subjectDatabases, Factualen_US
dc.subjectDiagnosis, Computer-Assisteden_US
dc.subjectElectroencephalographyen_US
dc.subjectEpilepsyen_US
dc.subjectHumansen_US
dc.subjectSignal Processing, Computer-Assisteden_US
dc.subjectSupport Vector Machineen_US
dc.titleAutomated Diagnosis of Epilepsy Using Key-Point-Based Local Binary Pattern of EEG Signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: