Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5960
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:09Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:09Z-
dc.date.issued2017-
dc.identifier.citationMaheshwari, S., Pachori, R. B., & Acharya, U. R. (2017). Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images. IEEE Journal of Biomedical and Health Informatics, 21(3), 803-813. doi:10.1109/JBHI.2016.2544961en_US
dc.identifier.issn2168-2194-
dc.identifier.otherEID(2-s2.0-85019228808)-
dc.identifier.urihttps://doi.org/10.1109/JBHI.2016.2544961-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5960-
dc.description.abstractGlaucoma is an ocular disorder caused due to increased fluid pressure in the optic nerve. It damages the optic nerve and subsequently causes loss of vision. The available scanning methods are Heidelberg retinal tomography, scanning laser polarimetry, optical coherence tomography. These methods are expensive and require experienced clinicians to use them. So, there is a need to diagnose glaucoma accurately with low cost. Hence, in this paper, we have presented a new methodology for an automated diagnosis of glaucoma using digital fundus images based on empirical wavelet transform (EWT). The EWT is used to decompose the image, correntropy features are obtained from decomposed EWT components. These extracted features are ranked based on $t$ value feature selection algorithm. Then, these features are used for the classification of normal and glaucoma images using least-squares support vector machine (LS-SVM) classifier. The LS-SVM is employed for classification with radial basis function, Morlet wavelet, Mexican-hat wavelet kernels. The classification accuracy of the proposed method is 98.33% and 96.67% using threefold and tenfold cross validation, respectively. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Journal of Biomedical and Health Informaticsen_US
dc.subjectEye protectionen_US
dc.subjectFeature extractionen_US
dc.subjectImage compressionen_US
dc.subjectOphthalmologyen_US
dc.subjectOptical tomographyen_US
dc.subjectRadial basis function networksen_US
dc.subjectScanningen_US
dc.subjectSupport vector machinesen_US
dc.subjectTomographyen_US
dc.subjectClassification accuracyen_US
dc.subjectCorrentropyen_US
dc.subjectEmpirical wavelet transform (EWT)en_US
dc.subjectFeature selection algorithmen_US
dc.subjectGlaucomaen_US
dc.subjectHeidelberg retinal tomographiesen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectScanning laser polarimetryen_US
dc.subjectWavelet transformsen_US
dc.subjectalgorithmen_US
dc.subjectanalytical parametersen_US
dc.subjectArticleen_US
dc.subjectcorrentropyen_US
dc.subjectdata baseen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectdigital imagingen_US
dc.subjectdisease classificationen_US
dc.subjectempirical wavelet transformen_US
dc.subjectentropyen_US
dc.subjecteye fundusen_US
dc.subjectglaucomaen_US
dc.subjectimage analysisen_US
dc.subjectkernel methoden_US
dc.subjectleast square analysisen_US
dc.subjectmethodologyen_US
dc.subjectsupport vector machineen_US
dc.subjectcomputer assisted diagnosisen_US
dc.subjectdiagnostic imagingen_US
dc.subjecteye fundusen_US
dc.subjectglaucomaen_US
dc.subjecthumanen_US
dc.subjectproceduresen_US
dc.subjectreproducibilityen_US
dc.subjectretinaen_US
dc.subjectvisual system examinationen_US
dc.subjectwavelet analysisen_US
dc.subjectAlgorithmsen_US
dc.subjectDiagnostic Techniques, Ophthalmologicalen_US
dc.subjectFundus Oculien_US
dc.subjectGlaucomaen_US
dc.subjectHumansen_US
dc.subjectImage Interpretation, Computer-Assisteden_US
dc.subjectLeast-Squares Analysisen_US
dc.subjectReproducibility of Resultsen_US
dc.subjectRetinaen_US
dc.subjectWavelet Analysisen_US
dc.titleAutomated Diagnosis of Glaucoma Using Empirical Wavelet Transform and Correntropy Features Extracted from Fundus Imagesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: