Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/5961
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:09Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:09Z-
dc.date.issued2017-
dc.identifier.citationSharma, R., Kumar, M., Pachori, R. B., & Acharya, U. R. (2017). Decision support system for focal EEG signals using tunable-Q wavelet transform. Journal of Computational Science, 20, 52-60. doi:10.1016/j.jocs.2017.03.022en_US
dc.identifier.issn1877-7503-
dc.identifier.otherEID(2-s2.0-85018688839)-
dc.identifier.urihttps://doi.org/10.1016/j.jocs.2017.03.022-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/5961-
dc.description.abstractIn the present work, we have proposed an automated system to identify focal electroencephalogram (EEG) signals. The nonlinearity present in the focal (F) and non-focal (NF) EEG signals is quantified in tunable-Q wavelet transform (TQWT) framework. First, the EEG signals of both classes are decomposed into different subbands using TQWT. Different nonlinear features namely, K-nearest neighbour entropy estimator (KnnEnt), centered correntropy (CCorrEnt), and fuzzy entropy (FzEnt), bispectral entropies, permutation entropy (PmEnt), sample entropy (SmEnt), fractal dimension (FracDm) and largest Lyapunov exponent (LLE) are computed from these subbands. These features reveal the complexity present in various subbands of F and NF EEG signals. Our proposed method showed highest classification accuracy of 94.06% with least squares-support vector machine (LS-SVM) classifier using only KnnEnt features. The results of classification increased to 95.00% using three entropies (KnnEnt, CCorrEnt, and FzEnt) with LS-SVM classifier. We have obtained the highest classification performance in the classification of F and NF classes which can be used to locate the region of surgery in focal epileptic patients accurately. © 2017 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceJournal of Computational Scienceen_US
dc.subjectArtificial intelligenceen_US
dc.subjectAutomationen_US
dc.subjectClassification (of information)en_US
dc.subjectDecision support systemsen_US
dc.subjectElectroencephalographyen_US
dc.subjectEntropyen_US
dc.subjectFractal dimensionen_US
dc.subjectLeast squares approximationsen_US
dc.subjectLyapunov methodsen_US
dc.subjectNearest neighbor searchen_US
dc.subjectSupport vector machinesen_US
dc.subjectWavelet transformsen_US
dc.subjectClassification accuracyen_US
dc.subjectClassification performanceen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectLargest Lyapunov exponenten_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectLS-SVMen_US
dc.subjectRanking methodsen_US
dc.subjectTQWTen_US
dc.subjectBiomedical signal processingen_US
dc.titleDecision support system for focal EEG signals using tunable-Q wavelet transformen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: