Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6002
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:28Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:28Z-
dc.date.issued2017-
dc.identifier.citationKumar, M., Pachori, R. B., & Acharya, U. R. (2017). Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals. Biomedical Signal Processing and Control, 31, 301-308. doi:10.1016/j.bspc.2016.08.018en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-84984856818)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2016.08.018-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6002-
dc.description.abstractIn the present work, an automated diagnosis of Coronary Artery Disease (CAD) using Electrocardiogram (ECG) signals is proposed. First, the ECG signals of 40 normal subjects and 7 CAD subjects are segmented into beats. 137,587 ECG beats of normal subjects and 44,426 ECG beats of CAD subjects are used in this work. Flexible Analytic Wavelet Transform (FAWT) technique is used to decompose the ECG beats. Cross Information Potential (CIP) parameter is computed from the real values of detail coefficients of FAWT based decomposition. For CAD subjects mean value of CIP parameter is found higher in comparison to normal subjects. Thereafter, Student's t-test method and Kruskal–Wallis statistical test are applied to check the discrimination ability of the extracted features. Further, the features are fed to Least Squares-Support Vector Machine (LS-SVM) for performing the classification. Classification accuracy is computed at every decomposition level starting from the first level of decomposition. We have observed significant improvement in the classification accuracy up to fourth level of decomposition. At fifth level of decomposition classification accuracy is not improved significantly as compared to the fourth level of decomposition. Hence, we analysed the ECG beats up to fifth level of decomposition. Accuracy of classification is higher for Morlet wavelet kernel (99.60%) in comparison to Radial Basis Function (RBF) kernel (99.56%). The developed methodology can be used in mass cardiac screening and can aid cardiologists in performing diagnosis. © 2016 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectComputer aided diagnosisen_US
dc.subjectDiseasesen_US
dc.subjectElectrocardiographyen_US
dc.subjectHearten_US
dc.subjectStatistical testsen_US
dc.subjectSupport vector machinesen_US
dc.subjectWavelet transformsen_US
dc.subjectAnalytic wavelet transformen_US
dc.subjectCoronary artery diseaseen_US
dc.subjectECG beatsen_US
dc.subjectInformation potentialen_US
dc.subjectStudent's t testsen_US
dc.subjectBiomedical signal processingen_US
dc.subjectArticleen_US
dc.subjectcardiologisten_US
dc.subjectcardiovascular parametersen_US
dc.subjectclassificationen_US
dc.subjectclinical articleen_US
dc.subjectcontrolled clinical trialen_US
dc.subjectcontrolled studyen_US
dc.subjectcoronary artery diseaseen_US
dc.subjectcross information potentialen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectelectrocardiogramen_US
dc.subjectelectrocardiographen_US
dc.subjectelectrocardiographyen_US
dc.subjectflexible analytic wavelet transformen_US
dc.subjecthumanen_US
dc.subjectKruskal Wallis testen_US
dc.subjectleast square analysisen_US
dc.subjectmass screeningen_US
dc.subjectpriority journalen_US
dc.subjectStudent t testen_US
dc.subjectsupport vector machineen_US
dc.subjectwavelet analysisen_US
dc.titleCharacterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: