Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6012
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Ashishen_US
dc.contributor.authorDixit, Tejendraen_US
dc.contributor.authorPalani, Anand Iyamperumalen_US
dc.contributor.authorSingh, Vipulen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:34Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:34Z-
dc.date.issued2016-
dc.identifier.citationKumar, A., Bhargava, K., Dixit, T., Palani, I. A., & Singh, V. (2016). Hydrothermally processed photosensitive field-effect transistor based on ZnO nanorod networks. Journal of Electronic Materials, 45(11), 5606-5611. doi:10.1007/s11664-016-4768-yen_US
dc.identifier.issn0361-5235-
dc.identifier.otherEID(2-s2.0-84978127446)-
dc.identifier.urihttps://doi.org/10.1007/s11664-016-4768-y-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6012-
dc.description.abstractFormation of a stable, reproducible zinc oxide (ZnO) nanorod-network-based photosensitive field-effect transistor using a hydrothermal process at low temperature has been demonstrated. K2Cr2O7 additive was used to improve adhesion and facilitate growth of the ZnO nanorod network over the SiO2/Si substrate. Transistor characteristics obtained in the dark resemble those of the n-channel-mode field-effect transistor (FET). The devices showed Ion/Ioff ratio above 8 × 102 under dark condition, field-effect mobility of 4.49 cm2 V−1 s−1, and threshold voltage of −12 V. Further, under ultraviolet (UV) illumination, the FET exhibited sensitivity of 2.7 × 102 in off-state (−10 V) versus 1.4 in on-state (+9.7 V) of operation. FETs based on such nanorod networks showed good photoresponse, which is attributed to the large surface area of the nanorod network. The growth temperature for ZnO nanorod networks was kept at 110°C, enabling a low-temperature, cost-effective, simple approach for high-performance ZnO-based FETs for large-scale production. The role of network interfaces in the FET performance is also discussed. © 2016, The Minerals, Metals & Materials Society.en_US
dc.language.isoenen_US
dc.publisherSpringer New York LLCen_US
dc.sourceJournal of Electronic Materialsen_US
dc.subjectChromium compoundsen_US
dc.subjectCost effectivenessen_US
dc.subjectII-VI semiconductorsen_US
dc.subjectLight sensitive materialsen_US
dc.subjectLow temperature productionen_US
dc.subjectNanorodsen_US
dc.subjectPhotosensitivityen_US
dc.subjectPotassium compoundsen_US
dc.subjectSilicaen_US
dc.subjectTemperatureen_US
dc.subjectThreshold voltageen_US
dc.subjectZinc oxideen_US
dc.subjectField-effect mobilitiesen_US
dc.subjectHydrothermalen_US
dc.subjectHydrothermal processen_US
dc.subjectLarge scale productionsen_US
dc.subjectPhotosensitive field-effect transistorsen_US
dc.subjectTransistor characteristicsen_US
dc.subjectUltraviolet illuminationen_US
dc.subjectZno nanorod networksen_US
dc.subjectField effect transistorsen_US
dc.titleHydrothermally Processed Photosensitive Field-Effect Transistor Based on ZnO Nanorod Networksen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: