Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6027
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAwasthi, Vishnu Kumaren_US
dc.contributor.authorMukherjee, Shaibalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:41Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:41Z-
dc.date.issued2016-
dc.identifier.citationAwasthi, V., Pandey, S. K., Garg, V., Sengar, B. S., Sharma, P., Kumar, S., . . . Mukherjee, S. (2016). Plasmon generation in sputtered ga-doped MgZnO thin films for solar cell applications. Journal of Applied Physics, 119(23) doi:10.1063/1.4953877en_US
dc.identifier.issn0021-8979-
dc.identifier.otherEID(2-s2.0-84975221684)-
dc.identifier.urihttps://doi.org/10.1063/1.4953877-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6027-
dc.description.abstractThe crystalline, electrical, morphological, optical properties and plasmonic behaviour of Ga doped MgZnO (GMZO) thin films grown at different substrate temperatures (200-600 °C) by a dual ion beam sputtering (DIBS) system are investigated. Transmittance value of more than ∼94% in 400-1000 nm region is observed for all GMZO films. The particle plasmon features can be detected in the absorption coefficient spectra of GMZO grown at 500 and 600 °C in the form of a peak at ∼4.37 eV, which corresponds to a plasmon resonance peak of nanoclusters formed in GMZO. The presence of such plasmonic features is confirmed by ultraviolet photoelectron spectroscopy measurements. The values of particle plasmon resonance energy of various nanoclusters are in the range of solar spectrum, and these can easily be tuned and excited at the desirable wavelengths while optimizing the efficiency of solar cells (SCs) by simple alteration of DIBS growth temperature. These nanoclusters are extremely promising to enhance the optical scattering and trapping of the incident light, which increases the optical path length in the absorber layer of cost-effective SCs and eventually increases its efficiency. © 2016 Author(s).en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.sourceJournal of Applied Physicsen_US
dc.subjectCost effectivenessen_US
dc.subjectIon beamsen_US
dc.subjectMagnesium alloysen_US
dc.subjectNanoclustersen_US
dc.subjectOptical propertiesen_US
dc.subjectPlasmonicsen_US
dc.subjectPlasmonsen_US
dc.subjectSemiconductor alloysen_US
dc.subjectSolar cellsen_US
dc.subjectSputteringen_US
dc.subjectSurface plasmon resonanceen_US
dc.subjectThin film solar cellsen_US
dc.subjectUltraviolet photoelectron spectroscopyen_US
dc.subjectZinc alloysen_US
dc.subjectAbsorption co-efficienten_US
dc.subjectDifferent substratesen_US
dc.subjectDual ion beam sputteringen_US
dc.subjectOptical path lengthsen_US
dc.subjectParticle plasmon resonanceen_US
dc.subjectPlasmon resonancesen_US
dc.subjectPlasmonic behavioursen_US
dc.subjectSolar-cell applicationsen_US
dc.subjectThin filmsen_US
dc.titlePlasmon generation in sputtered Ga-doped MgZnO thin films for solar cell applicationsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: