Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6030
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Upadhyay, Prabhat Kumar | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-17T15:45:43Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-17T15:45:43Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Tiwari, S. K., & Upadhyay, P. K. (2016). Maximum likelihood estimation of SNR for diffusion-based molecular communication. IEEE Wireless Communications Letters, 5(3), 320-323. doi:10.1109/LWC.2016.2553034 | en_US |
dc.identifier.issn | 2162-2337 | - |
dc.identifier.other | EID(2-s2.0-84976488665) | - |
dc.identifier.uri | https://doi.org/10.1109/LWC.2016.2553034 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6030 | - |
dc.description.abstract | We investigate the problem of estimation of a signal-to-noise ratio (SNR) measure for diffusion-based molecular communication (DMC) systems. Considering molecular concentration-encoded signal with residual noise, we present the SNR estimation using maximum likelihood principle with sampled observations. Moreover, we derive the Cramer-Rao lower bound and assess the performance of our proposed estimator in terms of its mean square error. Our analysis helps in designing a reliable DMC system with a memoryless receiver nanomachine. © 2016 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.source | IEEE Wireless Communications Letters | en_US |
dc.subject | Cramer-Rao bounds | en_US |
dc.subject | Diffusion | en_US |
dc.subject | Maximum likelihood | en_US |
dc.subject | Mean square error | en_US |
dc.subject | Nanotechnology | en_US |
dc.subject | Signal to noise ratio | en_US |
dc.subject | Cramer Rao lower bound | en_US |
dc.subject | Encoded signals | en_US |
dc.subject | Maximum likelihood Principle | en_US |
dc.subject | Molecular communication | en_US |
dc.subject | Molecular concentration | en_US |
dc.subject | Nanomachines | en_US |
dc.subject | Sampled observations | en_US |
dc.subject | SNR estimation | en_US |
dc.subject | Maximum likelihood estimation | en_US |
dc.title | Maximum Likelihood Estimation of SNR for Diffusion-Based Molecular Communication | en_US |
dc.type | Journal Article | en_US |
Appears in Collections: | Department of Electrical Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: