Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6031
Full metadata record
DC FieldValueLanguage
dc.contributor.authorManivannan, Anbarasuen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:45:43Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:45:43Z-
dc.date.issued2016-
dc.identifier.citationSahu, S., Pandey, S. K., Manivannan, A., Deshpande, U. P., Sathe, V. G., Reddy, V. R., & Sevi, M. (2016). Direct evidence for phase transition in thin Ge1Sb4Te7 films using in situ UV–Vis–NIR spectroscopy and raman scattering studies. Physica Status Solidi (B) Basic Research, 253(6), 1069-1075. doi:10.1002/pssb.201552803en_US
dc.identifier.issn0370-1972-
dc.identifier.otherEID(2-s2.0-84959419998)-
dc.identifier.urihttps://doi.org/10.1002/pssb.201552803-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6031-
dc.description.abstractPhase-change materials (PCM) show remarkable property-contrast from amorphous to crystalline phase that forms the basis for high-speed non-volatile memory device applications. Despite understanding the local structure and physical properties of these phases, a systematic study on the phase-change behavior is essential. Here, we used in situ UV–Vis–NIR spectroscopic measurements to study a systematic evolution of optical band gap (Eg) and the local disorder described by Tauc parameter (B), for the temperatures from 90 to 480 K on amorphous and cubic phases of Ge1Sb4Te7 thin films. It has been found that the Eg of amorphous phase decreases with increasing temperature from 90 to 400 K, while the disorder as exemplified by B, increases owing to thermal vibrations. At 420 K, a rapid decrease in the Eg from 0.47 to 0.33 eV and also a sharp reduction of ∼13% in the value of B1/2 is observed evidencing the signature of amorphous-to-cubic phase transition. Furthermore, the hexagonal phase is more disordered compared to cubic phase. The Raman results are consistent with optical measurements, which indicate that the degree of disorder reduces from amorphous to cubic phase, while hexagonal phase with an increased disorder is attributed to elongated bonds. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheimen_US
dc.language.isoenen_US
dc.publisherWiley-VCH Verlagen_US
dc.sourcePhysica Status Solidi (B) Basic Researchen_US
dc.subjectAntimony compoundsen_US
dc.subjectEnergy gapen_US
dc.subjectGermanium compoundsen_US
dc.subjectInfrared devicesen_US
dc.subjectLight absorptionen_US
dc.subjectNanocrystalline materialsen_US
dc.subjectNear infrared spectroscopyen_US
dc.subjectOptical data processingen_US
dc.subjectPhase change memoryen_US
dc.subjectPhase transitionsen_US
dc.subjectRaman spectroscopyen_US
dc.subjectTellurium compoundsen_US
dc.subjectThin filmsen_US
dc.subjectDegree of disorderen_US
dc.subjectGeSbTeen_US
dc.subjectIncreasing temperaturesen_US
dc.subjectNonvolatile memory devicesen_US
dc.subjectOptical measurementen_US
dc.subjectSpectroscopic measurementsen_US
dc.subjectTauc plotsen_US
dc.subjectThermal vibrationen_US
dc.subjectPhase change materialsen_US
dc.titleDirect evidence for phase transition in thin Ge1Sb4Te7 films using in situ UV–Vis–NIR spectroscopy and Raman scattering studiesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: