Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6065
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSahu, Omkishoren_US
dc.contributor.authorAnand, Vijayen_US
dc.contributor.authorKanhangad, Viveken_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:00Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:00Z-
dc.date.issued2015-
dc.identifier.citationSahu, O., Anand, V., Kanhangad, V., & Pachori, R. B. (2015). Classification of magnetic resonance brain images using bi-dimensional empirical mode decomposition and autoregressive model. Biomedical Engineering Letters, 5(4), 311-320. doi:10.1007/s13534-015-0208-9en_US
dc.identifier.issn2093-9868-
dc.identifier.otherEID(2-s2.0-84954199552)-
dc.identifier.urihttps://doi.org/10.1007/s13534-015-0208-9-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6065-
dc.description.abstractPurpose: Automated classification of brain magnetic resonance (MR) images has been an extensively researched topic in biomedical image processing. In this work, we propose a new approach for classifying normal and abnormal brain MR images using bi-dimensional empirical mode decomposition (BEMD) and autoregressive (AR) model Methods: In our approach, brain MR image is decomposed into four intrinsic mode functions (IMFs) using BEMD and AR coefficients from multiple IMFs are concatenated to form a feature vector. Finally a binary classifier, least-squares support vector machine (LS-SVM), is employed to discriminate between normal and abnormal brain MR images. Results: The proposed technique achieves 100% classification accuracy using second-order AR model with linear and radial basis function (RBF) as kernels in LS-SVM. Conclusions: Experimental results confirm that the performance of the proposed method is quite comparable with the existing results. Specifically, the presented approach outperforms one-dimensional empirical mode decomposition (1D-EMD) based classification of brain MR images. © 2015, Korean Society of Medical and Biological Engineering and Springer.en_US
dc.language.isoenen_US
dc.publisherSpringer Verlagen_US
dc.sourceBiomedical Engineering Lettersen_US
dc.subjectBrain mappingen_US
dc.subjectFunctionsen_US
dc.subjectImage processingen_US
dc.subjectImage retrievalen_US
dc.subjectImage segmentationen_US
dc.subjectMagnetismen_US
dc.subjectRadial basis function networksen_US
dc.subjectResonanceen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectAuto regressive modelsen_US
dc.subjectBi dimensional empirical mode decomposition (BEMD)en_US
dc.subjectBi-dimensional empirical mode decompositionsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectMagnetic resonance brain imagesen_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectAlzheimer diseaseen_US
dc.subjectArticleen_US
dc.subjectartificial neural networken_US
dc.subjectautoregressive modelen_US
dc.subjectbi dimensional empirical mode decompositionen_US
dc.subjectfeedback systemen_US
dc.subjectgliomaen_US
dc.subjectherpes simplex encephalitisen_US
dc.subjecthumanen_US
dc.subjectimage qualityen_US
dc.subjectintrinsic mode functionen_US
dc.subjectmathematical computingen_US
dc.subjectmeasurement accuracyen_US
dc.subjectmultiple sclerosisen_US
dc.subjectneuroimagingen_US
dc.subjectnuclear magnetic resonance imagingen_US
dc.subjectpriority journalen_US
dc.subjectsensitivity and specificityen_US
dc.titleClassification of magnetic resonance brain images using bi-dimensional empirical mode decomposition and autoregressive modelen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: