Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6083
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:09Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:09Z-
dc.date.issued2015-
dc.identifier.citationMandloi, M., & Bhatia, V. (2015). Congestion control based ant colony optimization algorithm for large MIMO detection. Expert Systems with Applications, 42(7), 3662-3669. doi:10.1016/j.eswa.2014.12.035en_US
dc.identifier.issn0957-4174-
dc.identifier.otherEID(2-s2.0-84921328755)-
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2014.12.035-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6083-
dc.description.abstractEmploying multiple antennas in wireless communication systems is a key technology for future generation of wireless systems. Symbol detection in multiple-input multiple-output (MIMO) systems with low complexity is challenging. The minimum bit error rate (BER) performance can be achieved by maximum likelihood (ML) detection. However, with increase in number of antennas in MIMO systems, the ML detection becomes impractical. For example, sphere decoder (SD) is a well known ML detector for MIMO systems, however because of its high complexity it is practical only up to 32 real dimensions. Recently, bio-inspired algorithms are being used for improving the BER performance of MIMO symbol detector, along with low complexity. In this article, we propose a congestion control based ant colony optimization (CC-ACO) algorithm for large MIMO detection. We also discuss the robustness of the proposed algorithm under channel state information (CSI) estimation error. The simulation results shows the effectiveness of the proposed algorithm in terms of achieving better bit error rate (BER) performance with low complexity. © 2015 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceExpert Systems with Applicationsen_US
dc.subjectAnt colony optimizationen_US
dc.subjectAntennasen_US
dc.subjectArtificial intelligenceen_US
dc.subjectBit error rateen_US
dc.subjectChannel estimationen_US
dc.subjectChannel state informationen_US
dc.subjectCodes (symbols)en_US
dc.subjectCommunication channels (information theory)en_US
dc.subjectDecodingen_US
dc.subjectError statisticsen_US
dc.subjectFeedback controlen_US
dc.subjectLocal area networksen_US
dc.subjectMaximum likelihooden_US
dc.subjectMaximum likelihood estimationen_US
dc.subjectMean square erroren_US
dc.subjectMIMO systemsen_US
dc.subjectOptimizationen_US
dc.subjectTelecommunication repeatersen_US
dc.subjectWireless telecommunication systemsen_US
dc.subjectAnt Colony Optimization algorithmsen_US
dc.subjectBit error rate (BER) performanceen_US
dc.subjectChannel estimation errorsen_US
dc.subjectMaximum-likelihood detectionen_US
dc.subjectMinimum mean squared erroren_US
dc.subjectSuccessive interference cancellationsen_US
dc.subjectWireless communication systemen_US
dc.subjectZero-forcingen_US
dc.subjectAlgorithmsen_US
dc.titleCongestion control based ant colony optimization algorithm for large MIMO detectionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: