Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6104
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, T. Sunilen_US
dc.contributor.authorKanhangad, Viveken_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:19Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:19Z-
dc.date.issued2015-
dc.identifier.citationKumar, T. S., Kanhangad, V., & Pachori, R. B. (2015). Classification of seizure and seizure-free EEG signals using local binary patterns. Biomedical Signal Processing and Control, 15, 33-40. doi:10.1016/j.bspc.2014.08.014en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-84908110014)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2014.08.014-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6104-
dc.description.abstractLocal binary pattern (LBP) is a texture descriptor that has been proven to be quite effective for variousimage analysis tasks in image processing. In this paper one-dimensional local binary pattern (1D-LBP) based features are used for classification of seizure and seizure-free electroencephalogram (EEG) signals. The proposed method employs a bank of Gabor filters for processing the EEG signals. The processed EEGsignal is divided into smaller segments and histograms of 1D-LBPs of these segments are computed. Nearest neighbor classifier utilizes the histogram matching scores to determine whether the acquired EEG signal belongs to seizure or seizure-free category. Experimental results on publicly available database suggest that the proposed features effectively characterize local variations and are useful for classification of seizure and seizure-free EEG signals with a classification accuracy of 98.33%. This result demonstrates the superiority of our approach for classification of seizure and seizure-free EEG signals over recently proposed approaches in the literature. © 2014 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectClassification (of information)en_US
dc.subjectElectroencephalographyen_US
dc.subjectGabor filtersen_US
dc.subjectGraphic methodsen_US
dc.subjectImage processingen_US
dc.subjectTexturesen_US
dc.subjectEEG signal classificationen_US
dc.subjectEEG signalsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEpilepsyen_US
dc.subjectLocal binary patternsen_US
dc.subjectBiomedical signal processingen_US
dc.subjectaccuracyen_US
dc.subjectArticleen_US
dc.subjectclassifieren_US
dc.subjectclinical articleen_US
dc.subjectdisease classificationen_US
dc.subjectelectroencephalogramen_US
dc.subjecthistogramen_US
dc.subjecthumanen_US
dc.subjectimage displayen_US
dc.subjectimage processingen_US
dc.subjectone dimensional local binary patternen_US
dc.subjectseizureen_US
dc.titleClassification of seizure and seizure-free EEG signals using local binary patternsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: