Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6117
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:26Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:26Z-
dc.date.issued2014-
dc.identifier.citationPachori, R. B., & Patidar, S. (2014). Epileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functions. Computer Methods and Programs in Biomedicine, 113(2), 494-502. doi:10.1016/j.cmpb.2013.11.014en_US
dc.identifier.issn0169-2607-
dc.identifier.otherEID(2-s2.0-84892783589)-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2013.11.014-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6117-
dc.description.abstractEpilepsy is a neurological disorder which is characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is a commonly used signal for detection of epileptic seizures. This paper presents a new method for classification of ictal and seizure-free EEG signals. The proposed method is based on the empirical mode decomposition (EMD) and the second-order difference plot (SODP). The EMD method decomposes an EEG signal into a set of symmetric and band-limited signals termed as intrinsic mode functions (IMFs). The SODP of IMFs provides elliptical structure. The 95% confidence ellipse area measured from the SODP of IMFs has been used as a feature in order to discriminate seizure-free EEG signals from the epileptic seizure EEG signals. The feature space obtained from the ellipse area parameters of two IMFs has been used for classification of ictal and seizure-free EEG signals using the artificial neural network (ANN) classifier. It has been shown that the feature space formed using ellipse area parameters of first and second IMFs has given good classification performance. Experimental results on EEG database available by the University of Bonn, Germany, are included to illustrate the effectiveness of the proposed method. © 2013 Elsevier Ireland Ltd.en_US
dc.language.isoenen_US
dc.sourceComputer Methods and Programs in Biomedicineen_US
dc.subject95% Confidence ellipse areaen_US
dc.subjectEEG signal classificationen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEpilepsyen_US
dc.subjectSecond ordersen_US
dc.subjectFunctionsen_US
dc.subjectGeometryen_US
dc.subjectNeural networksen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeurophysiologyen_US
dc.subjectSignal processingen_US
dc.subjectElectroencephalographyen_US
dc.subjectanalytic methoden_US
dc.subjectarticleen_US
dc.subjectartificial neural networken_US
dc.subjectautomated pattern recognitionen_US
dc.subjectback propagationen_US
dc.subjectbrain functionen_US
dc.subjectcontrolled studyen_US
dc.subjectdiagnostic test accuracy studyen_US
dc.subjectdisease classificationen_US
dc.subjectelectroencephalogramen_US
dc.subjectempirical mode decompositionen_US
dc.subjecthumanen_US
dc.subjectmeasurement accuracyen_US
dc.subjectoutcome assessmenten_US
dc.subjectsecond order difference ploten_US
dc.subjectseizureen_US
dc.subjectsensitivity and specificityen_US
dc.subject95% Confidence ellipse areaen_US
dc.subjectEEG signal classificationen_US
dc.subjectElectroencephalogram (EEG) signalen_US
dc.subjectEmpirical mode decompositionen_US
dc.subjectEpilepsyen_US
dc.subjectSecond-order difference ploten_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectNeural Networks (Computer)en_US
dc.subjectSeizuresen_US
dc.subjectSignal Processing, Computer-Assisteden_US
dc.titleEpileptic seizure classification in EEG signals using second-order difference plot of intrinsic mode functionsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: