Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6127
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJoshi, Varunen_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.contributor.authorVijesh, Antonyen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:31Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:31Z-
dc.date.issued2014-
dc.identifier.citationJoshi, V., Pachori, R. B., & Vijesh, A. (2014). Classification of ictal and seizure-free EEG signals using fractional linear prediction. Biomedical Signal Processing and Control, 9(1), 1-5. doi:10.1016/j.bspc.2013.08.006en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-84886528449)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2013.08.006-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6127-
dc.description.abstractIn this paper, we present a new method for electroencephalogram (EEG) signal classification based on fractional-order calculus. The method, termed fractional linear prediction (FLP), is used to model ictal and seizure-free EEG signals. It is found that the modeling error energy is substantially higher for ictal EEG signals compared to seizure-free EEG signals. Moreover, it is known that ictal EEG signals have higher energy than seizure-free EEG signals. These two parameters are then given as inputs to train a support vector machine (SVM). The trained SVM is then used to classify a set of EEG signals into ictal and seizure-free categories. It is found that the proposed method gives a classification accuracy of 95.33% when the SVM is trained with the radial basis function (RBF) kernel. © 2013 Elsevier Ltd.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectCalculationsen_US
dc.subjectElectroencephalographyen_US
dc.subjectForecastingen_US
dc.subjectSupport vector machinesen_US
dc.subjectClassification accuracyen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEpileptic seizuresen_US
dc.subjectFractional-order calculusen_US
dc.subjectLinear predictionen_US
dc.subjectModel errorsen_US
dc.subjectRadial Basis Function(RBF)en_US
dc.subjectTwo parameteren_US
dc.subjectBiomedical signal processingen_US
dc.subjectarticleen_US
dc.subjectcontrolled studyen_US
dc.subjectdiagnostic accuracyen_US
dc.subjectdiagnostic test accuracy studyen_US
dc.subjectdisease classificationen_US
dc.subjectelectroencephalogramen_US
dc.subjectenergyen_US
dc.subjectfractional linear predictionen_US
dc.subjecthumanen_US
dc.subjectlinear systemen_US
dc.subjectparametersen_US
dc.subjectpredictionen_US
dc.subjectpredictive valueen_US
dc.subjectpriority journalen_US
dc.subjectradial based functionen_US
dc.subjectseizureen_US
dc.subjectsensitivity and specificityen_US
dc.subjectsignal processingen_US
dc.subjectsupport vector machineen_US
dc.titleClassification of ictal and seizure-free EEG signals using fractional linear predictionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: