Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6129
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:32Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:32Z-
dc.date.issued2013-
dc.identifier.citationBajaj, V., & Pachori, R. B. (2013). Automatic classification of sleep stages based on the time-frequency image of EEG signals. Computer Methods and Programs in Biomedicine, 112(3), 320-328. doi:10.1016/j.cmpb.2013.07.006en_US
dc.identifier.issn0169-2607-
dc.identifier.otherEID(2-s2.0-84885418140)-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2013.07.006-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6129-
dc.description.abstractIn this paper, a new method for automatic sleep stage classification based on time-frequency image (TFI) of electroencephalogram (EEG) signals is proposed. Automatic classification of sleep stages is an important part for diagnosis and treatment of sleep disorders. The smoothed pseudo Wigner-Ville distribution (SPWVD) based time-frequency representation (TFR) of EEG signal has been used to obtain the time-frequency image (TFI). The segmentation of TFI has been performed based on the frequency-bands of the rhythms of EEG signals. The features derived from the histogram of segmented TFI have been used as an input feature set to multiclass least squares support vector machines (MC-LS-SVM) together with the radial basis function (RBF), Mexican hat wavelet, and Morlet wavelet kernel functions for automatic classification of sleep stages from EEG signals. The experimental results are presented to show the effectiveness of the proposed method for classification of sleep stages from EEG signals. © 2013 Elsevier Ireland Ltd.en_US
dc.language.isoenen_US
dc.sourceComputer Methods and Programs in Biomedicineen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectSleep stageen_US
dc.subjectSmoothed pseudo Wigner-Ville distributionsen_US
dc.subjectTime frequency analysisen_US
dc.subjectFace recognitionen_US
dc.subjectImage processingen_US
dc.subjectRadial basis function networksen_US
dc.subjectSleep researchen_US
dc.subjectSupport vector machinesen_US
dc.subjectWigner-Ville distributionen_US
dc.subjectElectroencephalographyen_US
dc.subjectadulten_US
dc.subjectarticleen_US
dc.subjectautomationen_US
dc.subjectelectroencephalogramen_US
dc.subjectfemaleen_US
dc.subjecthistogramen_US
dc.subjecthumanen_US
dc.subjecthuman experimenten_US
dc.subjectimage processingen_US
dc.subjectkernel methoden_US
dc.subjectmaleen_US
dc.subjectnormal humanen_US
dc.subjectsignal processingen_US
dc.subjectsleep stageen_US
dc.subjectsupport vector machineen_US
dc.subjectwaveformen_US
dc.subjectAutomatic sleep stage classificationen_US
dc.subjectElectroencephalogram (EEG) signalen_US
dc.subjectImage processingen_US
dc.subjectMulticlass least squares support vector machinesen_US
dc.subjectSmoothed pseudo Wigner-Ville distributionen_US
dc.subjectTime-frequency analysisen_US
dc.subjectAutomationen_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectSleepen_US
dc.titleAutomatic classification of sleep stages based on the time-frequency image of EEG signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: