Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6143
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:40Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:40Z-
dc.date.issued2013-
dc.identifier.citationPatidar, S., & Pachori, R. B. (2013). Segmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transform. Biomedical Signal Processing and Control, 8(6), 559-567. doi:10.1016/j.bspc.2013.05.004en_US
dc.identifier.issn1746-8094-
dc.identifier.otherEID(2-s2.0-84879299483)-
dc.identifier.urihttps://doi.org/10.1016/j.bspc.2013.05.004-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6143-
dc.description.abstractThe automatic segmentation of cardiac sound signals into heart beat cycles is generally required for the diagnosis of heart valve disorders. In this paper, a new method for segmentation of the cardiac sound signals using tunable-Q wavelet transform (TQWT) has been presented. The murmurs from cardiac sound signals are removed by suitably constraining TQWT based decomposition and reconstruction. The Q-factor, redundancy parameter and number of stages of decomposition of the TQWT are adapted to the desired statistical properties of the murmur-free reconstructed cardiac sound signals. The envelope based on cardiac sound characteristic waveform (CSCW) is extracted after the removal of low energy components from the reconstructed cardiac sound signals. Then the heart beat cycles are derived from the original cardiac sound signals by mapping the required timing information of CSCW which is obtained using established methods. The experimental results are included in order to show the effectiveness of the proposed method for segmentation of cardiac sound signals in comparison with other existing methods for various clinical cases. © 2013 Elsevier Ltd. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceBiomedical Signal Processing and Controlen_US
dc.subjectImage segmentationen_US
dc.subjectQ factor measurementen_US
dc.subjectSignal reconstructionen_US
dc.subjectWavelet transformsen_US
dc.subjectHeart beatsen_US
dc.subjectHeart soundsen_US
dc.subjectHeart valvesen_US
dc.subjectSound signalen_US
dc.subjectTunable-Q wavelet transform (TQWT)en_US
dc.subjectHearten_US
dc.subjectaorta stenosisen_US
dc.subjectaorta valve regurgitationen_US
dc.subjectarticleen_US
dc.subjectheart beaten_US
dc.subjectheart cycleen_US
dc.subjectheart murmuren_US
dc.subjectheart sounden_US
dc.subjecthumanen_US
dc.subjecthypertrophic obstructive cardiomyopathyen_US
dc.subjectmitral valve regurgitationen_US
dc.subjectmitral valve stenosisen_US
dc.subjectpriority journalen_US
dc.subjectQ waveen_US
dc.subjectsignal processingen_US
dc.subjecttricuspid valve regurgitationen_US
dc.subjecttunable Q wavelet transformen_US
dc.subjectwaveformen_US
dc.subjectwavelet analysisen_US
dc.titleSegmentation of cardiac sound signals by removing murmurs using constrained tunable-Q wavelet transformen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: