Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6146
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:42Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:42Z-
dc.date.issued2012-
dc.identifier.citationBajaj, V., & Pachori, R. B. (2012). Classification of seizure and nonseizure EEG signals using empirical mode decomposition. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1135-1142. doi:10.1109/TITB.2011.2181403en_US
dc.identifier.issn1089-7771-
dc.identifier.otherEID(2-s2.0-84865980798)-
dc.identifier.urihttps://doi.org/10.1109/TITB.2011.2181403-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6146-
dc.description.abstractIn this paper, we present a new method for classification of electroencephalogram (EEG) signals using empirical mode decomposition (EMD) method. The intrinsic mode functions (IMFs) generated by EMD method can be considered as a set of amplitude and frequency modulated (AM-FM) signals. The Hilbert transformation of IMFs provides an analytic signal representation of the IMFs. The two bandwidths, namely amplitude modulation bandwidth (B AM) and frequency modulation bandwidth (BFM), computed from the analytic IMFs, have been used as an input to least squares support vector machine (LS-SVM) for classifying seizure and nonseizure EEG signals. The proposed method for classification of EEG signals based on the bandwidth features (BAM and BFM) and the LS-SVM has provided better classification accuracy than the method adopted by Liang and coworkers in their study published in 2010. The experimental results with the recorded EEG signals from a published dataset are included to show the effectiveness of the proposed method for EEG signal classification. © 1997-2012 IEEE.en_US
dc.language.isoenen_US
dc.sourceIEEE Transactions on Information Technology in Biomedicineen_US
dc.subjectAnalytic signalsen_US
dc.subjectClassification accuracyen_US
dc.subjectData setsen_US
dc.subjectEEG signal classificationen_US
dc.subjectEEG signalsen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEMD methoden_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectepilepsyen_US
dc.subjectFrequency modulateden_US
dc.subjectHilbert transformationsen_US
dc.subjectIntrinsic Mode functionsen_US
dc.subjectLeast squares support vector machinesen_US
dc.subjectAmplitude modulationen_US
dc.subjectBandwidthen_US
dc.subjectClassification (of information)en_US
dc.subjectFrequency modulationen_US
dc.subjectSignal processingen_US
dc.subjectSupport vector machinesen_US
dc.subjectElectroencephalographyen_US
dc.subjectclassificationen_US
dc.subjectelectroencephalographyen_US
dc.subjectfactual databaseen_US
dc.subjecthumanen_US
dc.subjectpathophysiologyen_US
dc.subjectregression analysisen_US
dc.subjectSeizuresen_US
dc.subjectsignal processingen_US
dc.subjectsupport vector machineen_US
dc.subjectarticleen_US
dc.subjectclassificationen_US
dc.subjectelectroencephalographyen_US
dc.subjectseizureen_US
dc.subjectDatabases, Factualen_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectLeast-Squares Analysisen_US
dc.subjectSeizuresen_US
dc.subjectSignal Processing, Computer-Assisteden_US
dc.subjectSupport Vector Machinesen_US
dc.subjectDatabases, Factualen_US
dc.subjectElectroencephalographyen_US
dc.subjectHumansen_US
dc.subjectLeast-Squares Analysisen_US
dc.subjectSeizuresen_US
dc.subjectSignal Processing, Computer-Assisteden_US
dc.subjectSupport Vector Machinesen_US
dc.titleClassification of seizure and nonseizure EEG signals using empirical mode decompositionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: