Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6155
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-17T15:46:46Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-17T15:46:46Z-
dc.date.issued2011-
dc.identifier.citationPachori, R. B., & Bajaj, V. (2011). Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition. Computer Methods and Programs in Biomedicine, 104(3), 373-381. doi:10.1016/j.cmpb.2011.03.009en_US
dc.identifier.issn0169-2607-
dc.identifier.otherEID(2-s2.0-80655124711)-
dc.identifier.urihttps://doi.org/10.1016/j.cmpb.2011.03.009-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6155-
dc.description.abstractEpilepsy is one of the most common neurological disorders characterized by transient and unexpected electrical disturbance of the brain. The electroencephalogram (EEG) is an invaluable measurement for the purpose of assessing brain activities, containing information relating to the different physiological states of the brain. It is a very effective tool for understanding the complex dynamical behavior of the brain. This paper presents the application of empirical mode decomposition (EMD) for analysis of EEG signals. The EMD decomposes a EEG signal into a finite set of bandlimited signals termed intrinsic mode functions (IMFs). The Hilbert transformation of IMFs provides analytic signal representation of IMFs. The area measured from the trace of the analytic IMFs, which have circular form in the complex plane, has been used as a feature in order to discriminate normal EEG signals from the epileptic seizure EEG signals. It has been shown that the area measure of the IMFs has given good discrimination performance. Simulation results illustrate the effectiveness of the proposed method. © 2011 Elsevier Ireland Ltd.en_US
dc.language.isoenen_US
dc.sourceComputer Methods and Programs in Biomedicineen_US
dc.subjectAnalytic signalsen_US
dc.subjectBand-limited signalen_US
dc.subjectBrain activityen_US
dc.subjectComplex planesen_US
dc.subjectDynamical behaviorsen_US
dc.subjectEEG signalsen_US
dc.subjectEffective toolen_US
dc.subjectElectrical disturbancesen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectEmpirical Mode Decompositionen_US
dc.subjectEpilepsyen_US
dc.subjectEpileptic seizuresen_US
dc.subjectFinite seten_US
dc.subjectHilbert transformationsen_US
dc.subjectIntrinsic mode functionsen_US
dc.subjectNeurological disordersen_US
dc.subjectPhysiological stateen_US
dc.subjectSimulation resulten_US
dc.subjectBrainen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectPower qualityen_US
dc.subjectSignal analysisen_US
dc.subjectElectroencephalographyen_US
dc.subjectarticleen_US
dc.subjectelectroencephalogramen_US
dc.subjectempirical mode decompositionen_US
dc.subjectseizureen_US
dc.subjectsimulationen_US
dc.subjecttechniqueen_US
dc.subjectElectroencephalographyen_US
dc.subjectEmpirical Researchen_US
dc.subjectEpilepsyen_US
dc.subjectHumansen_US
dc.titleAnalysis of normal and epileptic seizure EEG signals using empirical mode decompositionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: