Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6491
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCherugondi, Charithaen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:38Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:38Z-
dc.date.issued2020-
dc.identifier.citationLuke, D. R., Charitha, C., Shefi, R., & Malitsky, Y. (2020). Efficient, quantitative numerical methods for statistical image deconvolution and denoising doi:10.1007/978-3-030-34413-9_12en_US
dc.identifier.issn0303-4216-
dc.identifier.otherEID(2-s2.0-85090732249)-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-34413-9_12-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6491-
dc.description.abstractWe review the development of efficient numerical methods for statistical multi-resolution estimation of optical imaging experiments. In principle, this involves constrained linear deconvolution and denoising, and so these types of problems can be formulated as convex constrained, or even unconstrained, optimization. We address two main challenges: first of these is to quantify convergence of iterative algorithms; the second challenge is to develop efficient methods for these large-scale problems without sacrificing the quantification of convergence. We review the state of the art for these challenges. © The Author(s) 2020.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceTopics in Applied Physicsen_US
dc.titleEfficient, quantitative numerical methods for statistical image deconvolution and denoisingen_US
dc.typeBook Chapteren_US
dc.rights.licenseAll Open Access, Hybrid Gold-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: