Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6496
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGupta, Sundeshen_US
dc.contributor.authorShah, Adityaen_US
dc.contributor.authorShah, Mitenen_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:39Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:39Z-
dc.date.issued2021-
dc.identifier.citationGupta, S., Shah, A., Shah, M., Syiemlieh, L., & Maurya, C. (2021). FiLMing multimodal sarcasm detection with Attention doi:10.1007/978-3-030-92307-5_21en_US
dc.identifier.isbn9783030923068-
dc.identifier.issn1865-0929-
dc.identifier.otherEID(2-s2.0-85121914134)-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-92307-5_21-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6496-
dc.description.abstractSarcasm detection identifies natural language expressions whose intended meaning is different from what is implied by its surface meaning. Today, social media has given rise to an abundant amount of multimodal data where users express their opinions through text and images. Our paper aims to leverage multimodal data to improve the performance of the existing systems for sarcasm detection. We propose a novel architecture that uses the RoBERTa model with a co-attention to incorporate context incongruity between input text and image attributes. Further, we integrate feature-wise affine transformation (FiLM) by conditioning the input image through FiLMed ResNet blocks with the textual features to capture the multimodal information. The output from both the models and CLS token from RoBERTa is concatenated for the final prediction. Our results demonstrate that our proposed model outperforms the existing state-of-the-art methods by 6.14% F1 score on the public Twitter multimodal sarcasm detection dataset (Our code+data is available at https://tinyurl.com/kp2ruj7c ). © 2021, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceCommunications in Computer and Information Scienceen_US
dc.subjectSocial networking (online)en_US
dc.subjectExisting systemsen_US
dc.subjectMulti-modalen_US
dc.subjectMulti-modal dataen_US
dc.subjectMulti-modal learningen_US
dc.subjectNatural-language expressionsen_US
dc.subjectNovel architectureen_US
dc.subjectPerformanceen_US
dc.subjectSarcasm detectionen_US
dc.subjectSocial mediaen_US
dc.subjectText attributesen_US
dc.subjectMachine learningen_US
dc.titleFiLMing Multimodal Sarcasm Detection with Attentionen_US
dc.typeConference Paperen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: