Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/6502
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ganaie, M. A. | en_US |
dc.contributor.author | Tanveer, M. | en_US |
dc.date.accessioned | 2022-03-17T01:00:00Z | - |
dc.date.accessioned | 2022-03-21T10:49:40Z | - |
dc.date.available | 2022-03-17T01:00:00Z | - |
dc.date.available | 2022-03-21T10:49:40Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Ganaie, M. A., Tanveer, M., & Suganthan, P. N. (2020). Minimum variance embedded random vector functional link network doi:10.1007/978-3-030-63823-8_48 | en_US |
dc.identifier.isbn | 9783030638221 | - |
dc.identifier.issn | 1865-0929 | - |
dc.identifier.other | EID(2-s2.0-85097085237) | - |
dc.identifier.uri | https://doi.org/10.1007/978-3-030-63823-8_48 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/6502 | - |
dc.description.abstract | In this paper, we propose an improved randomized based feed forward neural networks, known as Total variance minimization based random vector functional link network (Total-Var-RVFL) and intraclass variance minimization based random vector functional link network (Class-Var-RVFL). Total-Var-RVFL exploits the training data dispersion by minimizing the total variance while as Class-Var-RVFL minimizes the intraclass variance of the training data. The proposed classification models are evaluated on 18 datasets (UCI datasets). From the experimental analysis, one can see that the proposed classification models show better generalization performance as compared to the given baseline models. © 2020, Springer Nature Switzerland AG. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Springer Science and Business Media Deutschland GmbH | en_US |
dc.source | Communications in Computer and Information Science | en_US |
dc.subject | Classification (of information) | en_US |
dc.subject | Value engineering | en_US |
dc.subject | Baseline models | en_US |
dc.subject | Classification models | en_US |
dc.subject | Experimental analysis | en_US |
dc.subject | Functional-link network | en_US |
dc.subject | Generalization performance | en_US |
dc.subject | Minimum variance | en_US |
dc.subject | Total variance | en_US |
dc.subject | Variance minimization | en_US |
dc.subject | Feedforward neural networks | en_US |
dc.title | Minimum Variance Embedded Random Vector Functional Link Network | en_US |
dc.type | Conference Paper | en_US |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: