Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6502
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGanaie, M. A.en_US
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:40Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:40Z-
dc.date.issued2020-
dc.identifier.citationGanaie, M. A., Tanveer, M., & Suganthan, P. N. (2020). Minimum variance embedded random vector functional link network doi:10.1007/978-3-030-63823-8_48en_US
dc.identifier.isbn9783030638221-
dc.identifier.issn1865-0929-
dc.identifier.otherEID(2-s2.0-85097085237)-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-63823-8_48-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6502-
dc.description.abstractIn this paper, we propose an improved randomized based feed forward neural networks, known as Total variance minimization based random vector functional link network (Total-Var-RVFL) and intraclass variance minimization based random vector functional link network (Class-Var-RVFL). Total-Var-RVFL exploits the training data dispersion by minimizing the total variance while as Class-Var-RVFL minimizes the intraclass variance of the training data. The proposed classification models are evaluated on 18 datasets (UCI datasets). From the experimental analysis, one can see that the proposed classification models show better generalization performance as compared to the given baseline models. © 2020, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceCommunications in Computer and Information Scienceen_US
dc.subjectClassification (of information)en_US
dc.subjectValue engineeringen_US
dc.subjectBaseline modelsen_US
dc.subjectClassification modelsen_US
dc.subjectExperimental analysisen_US
dc.subjectFunctional-link networken_US
dc.subjectGeneralization performanceen_US
dc.subjectMinimum varianceen_US
dc.subjectTotal varianceen_US
dc.subjectVariance minimizationen_US
dc.subjectFeedforward neural networksen_US
dc.titleMinimum Variance Embedded Random Vector Functional Link Networken_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: