Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6503
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:40Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:40Z-
dc.date.issued2020-
dc.identifier.citationHu, M., Shi, Q., Suganthan, P. N., & Tanveer, M. (2020). Adaptive ensemble variants of random vector functional link networks doi:10.1007/978-3-030-63823-8_4en_US
dc.identifier.isbn9783030638221-
dc.identifier.issn1865-0929-
dc.identifier.otherEID(2-s2.0-85097040280)-
dc.identifier.urihttps://doi.org/10.1007/978-3-030-63823-8_4-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6503-
dc.description.abstractIn this paper, we propose a novel adaptive ensemble variant of random vector functional link (RVFL) networks. Adaptive ensemble RVFL networks assign different weights to the sub-classifiers according to prediction performance of single RVFL network. Generic Adaptive Ensemble RVFL is composed of a series of unrelated, independent weak classifiers. We also employ our adaptive ensemble method to the deep random vector functional link (dRVFL). Each layer in dRVFL can be regarded as a sub-classifier. However, instead of training several models independently, the sub-classifiers of dRVFL can be obtained by training a single network once. © 2020, Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceCommunications in Computer and Information Scienceen_US
dc.subjectComputersen_US
dc.subjectEnsemble methodsen_US
dc.subjectFunctional linksen_US
dc.subjectFunctional-link networken_US
dc.subjectPrediction performanceen_US
dc.subjectRandom vectorsen_US
dc.subjectSingle networksen_US
dc.subjectSub classifiersen_US
dc.subjectWeak classifiersen_US
dc.subjectComputer scienceen_US
dc.titleAdaptive Ensemble Variants of Random Vector Functional Link Networksen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: