Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6505
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorRajani, T.en_US
dc.contributor.authorGanaie, M. A.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:40Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:40Z-
dc.date.issued2019-
dc.identifier.citationTanveer, M., Rajani, T., & Ganaie, M. A. (2019). Improved sparse pinball twin SVM. Paper presented at the Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, , 2019-October 3287-3291. doi:10.1109/SMC.2019.8914642en_US
dc.identifier.isbn9781728145693-
dc.identifier.issn1062-922X-
dc.identifier.otherEID(2-s2.0-85076762562)-
dc.identifier.urihttps://doi.org/10.1109/SMC.2019.8914642-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6505-
dc.description.abstractIn this paper, we propose an improved version of sparse pinball twin support vector machine (SPTSVM) [1], called improved sparse pinball twin support vector machine (ISPTSVM). SPTSVM implements empirical risk minimization principle and the matrices appearing in the formulation of SPTSVM are positive semi-definite. Here, we reformulate the primal problems of SPTSVM by introducing extra regularization term to the objective function of SPTSVM. Unlike SPTSVM, structural risk minimization (SRM) principle is implemented in the proposed ISPTSVM which embodies the marrow of statistical learning theory. Also, the matrices that appear in the dual formulation of the proposed ISPTSVM are positive definite. Results computed on multiple UCI benchmark datasets clearly indicate the effectiveness and applicability of the proposed ISPTSVM compared to pinball support vector machine (Pin-SVM), twin bounded support vector machine (TBSVM) and SPTSVM. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceConference Proceedings - IEEE International Conference on Systems, Man and Cyberneticsen_US
dc.subjectClassification (of information)en_US
dc.subjectVectorsen_US
dc.subjectBounded support vector machinesen_US
dc.subjectEmpirical risk minimizationen_US
dc.subjectObjective functionsen_US
dc.subjectRegularization termsen_US
dc.subjectStatistical learning theoryen_US
dc.subjectStructural risk minimizationen_US
dc.subjectStructural risk minimization principleen_US
dc.subjectTwin support vector machinesen_US
dc.subjectSupport vector machinesen_US
dc.titleImproved sparse pinball twin SVMen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: