Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6506
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:40Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:40Z-
dc.date.issued2019-
dc.identifier.citationCao, Z., Chang, Y. -., Prasad, M., Tanveer, M., & Lin, C. -. (2019). Tensor decomposition for EEG signals retrieval. Paper presented at the Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, , 2019-October 2423-2427. doi:10.1109/SMC.2019.8914076en_US
dc.identifier.isbn9781728145693-
dc.identifier.issn1062-922X-
dc.identifier.otherEID(2-s2.0-85076721454)-
dc.identifier.urihttps://doi.org/10.1109/SMC.2019.8914076-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6506-
dc.description.abstractPrior studies have proposed methods to recover multi-channel electroencephalography (EEG) signal ensembles from their partially sampled entries. These methods depend on spatial scenarios, yet few approaches aiming to a temporal reconstruction with lower loss. The goal of this study is to retrieve the temporal EEG signals independently which was overlooked in data pre-processing. We considered EEG signals are impinging on tensor-based approach, named nonlinear Canonical Polyadic Decomposition (CPD). In this study, we collected EEG signals during a resting-state task. Then, we defined that the source signals are original EEG signals and the generated tensor is perturbed by Gaussian noise with a signal-to-noise ratio of 0 dB. The sources are separated using a basic nonnegative CPD and the relative errors on the estimates of the factor matrices. Comparing the similarities between the source signals and their recovered versions, the results showed significantly high correlation over 95%. Our findings reveal the possibility of recoverable temporal signals in EEG applications. © 2019 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceConference Proceedings - IEEE International Conference on Systems, Man and Cyberneticsen_US
dc.subjectData handlingen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectGaussian noise (electronic)en_US
dc.subjectRecoveryen_US
dc.subjectSignal reconstructionen_US
dc.subjectSignal to noise ratioen_US
dc.subjectTensorsen_US
dc.subjectCanonical polyadic decompositionsen_US
dc.subjectData preprocessingen_US
dc.subjectNonlinearen_US
dc.subjectRelative errorsen_US
dc.subjectSource signalsen_US
dc.subjectTemporal signalsen_US
dc.subjectTensor based approachen_US
dc.subjectTensor decompositionen_US
dc.subjectBiomedical signal processingen_US
dc.titleTensor decomposition for EEG signals retrievalen_US
dc.typeConference Paperen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: