Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6507
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRichhariya, Bharaten_US
dc.contributor.authorSharma, Anuragen_US
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:41Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:41Z-
dc.date.issued2019-
dc.identifier.citationRichhariya, B., Sharma, A., & Tanveer, M. (2019). Improved universum twin support vector machine. Paper presented at the Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 2045-2052. doi:10.1109/SSCI.2018.8628671en_US
dc.identifier.isbn9781538692769-
dc.identifier.otherEID(2-s2.0-85062792597)-
dc.identifier.urihttps://doi.org/10.1109/SSCI.2018.8628671-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6507-
dc.description.abstractUniversum based learning provides prior information about data in the optimization problem of support vector machine (SVM). Universum twin support vector machine (UTSVM) is a computationally efficient algorithm for classification problems. It solves a pair of quadratic programming problems (QPPs) to obtain the classifier. In order to include the structural risk minimization (SRM) principle in the formulation of UTSVM, we propose an improved universum twin support vector machine (IUTSVM). Our proposed IUTSVM implicitly makes the matrices non-singular in the optimization problem by adding a regularization term. Several numerical experiments are performed on benchmark real world datasets to verify the efficacy of our proposed IUTSVM. The experimental results justifies the better generalization performance of our proposed IUTSVM in comparison to existing algorithms. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018en_US
dc.subjectArtificial intelligenceen_US
dc.subjectQuadratic programmingen_US
dc.subjectVectorsen_US
dc.subjectGeneralization performanceen_US
dc.subjectNon-singularen_US
dc.subjectQuadratic programming problemsen_US
dc.subjectregularizationen_US
dc.subjectStructural risk minimizationen_US
dc.subjectStructural risk minimization principleen_US
dc.subjectTwin support vector machinesen_US
dc.subjectUniversumen_US
dc.subjectSupport vector machinesen_US
dc.titleImproved universum twin support vector machineen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: