Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/6508
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.contributor.authorAngami, N. V.en_US
dc.date.accessioned2022-03-17T01:00:00Z-
dc.date.accessioned2022-03-21T10:49:41Z-
dc.date.available2022-03-17T01:00:00Z-
dc.date.available2022-03-21T10:49:41Z-
dc.date.issued2019-
dc.identifier.citationTanveer, M., Pachori, R. B., & Angami, N. V. (2019). Classification of seizure and seizure-free EEG signals using hjorth parameters. Paper presented at the Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018, 2180-2185. doi:10.1109/SSCI.2018.8628651en_US
dc.identifier.isbn9781538692769-
dc.identifier.otherEID(2-s2.0-85062777080)-
dc.identifier.urihttps://doi.org/10.1109/SSCI.2018.8628651-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/6508-
dc.description.abstractIn this work, we used flexible analytic wavelet transform (FAWT) for the decomposition of electroencephalogram (EEG) for the the analysis of epileptic seizure in EEG signals with Hjorth parameters as features for these signals. For the classification of EEG signals, the chosen classifiers are twin support vector machines, least squares twin support vector machines and robust energy-based twin support vector machines for seizure and seizure-free signals. We apply 10-fold cross-validation to ensure the reliability of the results and to avoid over-fitting of the model. The maximum accuracy achieved in this work is 9S.33%. Our proposed approach is found to be comparable with other baseline approaches present in the literature. © 2018 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of the 2018 IEEE Symposium Series on Computational Intelligence, SSCI 2018en_US
dc.subjectArtificial intelligenceen_US
dc.subjectElectroencephalographyen_US
dc.subjectSupport vector machinesen_US
dc.subjectVectorsen_US
dc.subjectWavelet decompositionen_US
dc.subjectAnalytic wavelet transformen_US
dc.subjectElectro-encephalogram (EEG)en_US
dc.subjectHjorth parametersen_US
dc.subjectseizure and seizure-freeen_US
dc.subjectTwin support vector machinesen_US
dc.subjectBiomedical signal processingen_US
dc.titleClassification of seizure and seizure-free EEG signals using Hjorth parametersen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: